
PUFFIN

Physically unclonable functions found
in standard PC components

Project number: 284833
FP7-ICT-2011-C

D2.1

Scientific contribution of WP2, part 1
Analysis and Qualification

Due date of deliverable: 31. July 2013
Actual submission date: 30. September 2013

WP contributing to the deliverable: WP2

Start date of project: 1. February 2012 Duration: 3 years

Coordinator:
Technische Universiteit Eindhoven
Email: coordinator@puffin.eu.org
www.puffin.eu.org

Revision 1.0

Project co-funded by the European Commission within the 7th Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission services)

RE Restricted to a group specified by the consortium (including the Commission services)

CO Confidential, only for members of the consortium (including the Commission services)

Scientific contribution of WP2, part 1

Analysis and Qualification

V. van der Leest (IID)
Ruben Niederhagen (TUE)

and the WP2 team

30. September 2013
Revision 1.0

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the FP7 program under project number 284833. The information in this document is provided
as is, and no warranty is given or implied that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

Abstract

This document contains an overview of the work and results from Work Package 2 (WP2)
of the PUFFIN project. The work in WP2 can be divided into two main parts: analysis of
PUF measurements (from WP1) and development of new methodologies for evaluating PUF
behaviour. This document describes what has been achieved in both of these areas during the
first phase (18 months) of the PUFFIN project. The results of the work performed in WP2
will serve as input for WP3, since WP2 will show which PUFs (and therefore which devices)
have the required properties to implement certain specific use cases.

Keywords: WP2, PUF analysis

ii

Contents

1 Introduction 1

2 Preliminary Analysis of PUFs 3
2.1 Introduction . 3
2.2 Test Descriptions . 4

2.2.1 Repeated Start-up Test . 4
2.2.2 Temperature Cycle Test . 4
2.2.3 Between-Class Hamming Distance Test 5
2.2.4 Hamming Weight Test . 5

2.3 Test Results . 6
2.3.1 Ainol Novo 7 Tablet . 6
2.3.2 Texas Instruments MSP430F5308 . 9
2.3.3 Microchip PIC16F1825 . 13
2.3.4 ST STM32F100R8 . 16
2.3.5 ST STM32F100RB . 19
2.3.6 Atmel ATMega328p . 22
2.3.7 NVIDIA GeForce GTX 295 . 25
2.3.8 Pandaboard . 28

2.4 Conclusions . 31

3 New methods for PUF analysis 33

A Paper: “An Accurate Probabilistic Reliability Model for Silicon PUFs” 35

B Paper: “Bias-based modeling and entropy analysis of PUFs” 57

iii

iv

List of Figures

2.3.1 Within-class Hamming distance of SRAM in Ainol Novo 7 tablets. 6
2.3.2 Between-class versus within-class fractional Hamming distances of SRAM in

Ainol Novo 7 tablet measurements. 7
2.3.3 Fractional Hamming weight of SRAM PUFs in Ainol Novo 7 tablets. 8
2.3.4 Example measurement of an SRAM PUF response from an Ainol Novo 7 tablet. 8
2.3.5 Within-class Hamming distance of SRAM in MSP430F5308 measurements. . 9
2.3.6 Within-class Hamming distance of SRAM in MSP430F5308 measured over dif-

ferent temperatures. 10
2.3.7 Between-class versus within-class Hamming distance of SRAM in MSP430F5308

measurements. 11
2.3.8 Hamming weight of SRAM in MSP430F5308 measurements. 12
2.3.9 Example of SRAM PUF response from MSP430F5308 measurement. 12
2.3.10Within-class Hamming distance of SRAM in PIC16F1825 measurements. . . 13
2.3.11Between-class versus within-class Hamming distance of SRAM in PIC16F1825

measurements. 14
2.3.12Hamming weight of SRAM in PIC16F1825 measurements. 15
2.3.13Example of SRAM PUF response from PIC16F1825 measurement. 15
2.3.14Within-class Hamming distance of SRAM in STM32F100R8 measurements. . 16
2.3.15Between-class versus within-class Hamming distance of SRAM in STM32F100R8

measurements. 17
2.3.16Hamming weight of SRAM in STM32F100R8 measurements. 18
2.3.17Example of SRAM PUF response from STM32F100R8 measurement. 18
2.3.18Within-class Hamming distance of SRAM in STM32F100RB measurements. . 19
2.3.19Between-class versus within-class Hamming distance of SRAM in STM32F100RB

measurements. 20
2.3.20Hamming weight of SRAM in STM32F100RB measurements. 21
2.3.21Example of SRAM PUF response from STM32F100RB measurement. 21
2.3.22Within-class Hamming distance of SRAM in ATMega328p measurements. . . 22
2.3.23Between-class versus within-class Hamming distance of SRAM in ATMega328p

measurements. 23
2.3.24Hamming weight of SRAM in ATMega328p measurements. 24
2.3.25Example of SRAM PUF response from ATMega328p measurement. 24
2.3.26Within-class Hamming distance of SRAM in GTX 295 measurements. 25
2.3.27Between-class versus within-class Hamming distance of SRAM in GTX 295

measurements. 26
2.3.28Hamming weight of SRAM in GTX 295 measurements. 27
2.3.29Example of SRAM PUF response from GTX 295 measurement. 27

v

vi

2.3.30Within-class Hamming distance of SRAM in Pandaboard measurements. . . . 28
2.3.31Between-class versus within-class Hamming distance of SRAM in Pandaboard

measurements. 29
2.3.32Hamming weight of SRAM in Pandaboard measurements. 30
2.3.33Example of SRAM PUF response from Pandaboard measurement. 30

List of Tables

2.4.1 Test results for the different devices . 31

vii

viii

Chapter 1

Introduction

Work Package 2 (WP2) of the PUFFIN project focusses on analysis and qualification of the
PUFs that have been found in WP1. Based on this goal, WP2 is divided into two main parts:

• The analysis of PUF measurements (from WP1), and

• the development of new methodologies for evaluating PUF behaviour.

This document describes what has been achieved in both of these areas during the first phase
(18 months) of the PUFFIN project. The results of the work performed in WP2 serve as input
for WP3, since WP2 shows which PUFs (and therefore which platforms) have the required
properties to implement specific use cases from WP3.

Chapter 2 of this deliverable provides an overview of the tests that have been performed
on the different PUF measurements from WP1. These tests have been used as a preliminary
investigation into the suitability of the different PUFs from commercially available devices for
actual use in PUF implementations. Due to the limited number of devices measured (and the
limited set of environmental tests performed), the overview presented in this section does not
offer a thorough qualification of the measured PUFs yet. However, the results can already be
used to distinguish between platforms that will not be suitable for implementing PUF-based
security primitives and those that do seem promising.

Chapter 3 describes which new methodologies for evaluating PUF behaviour have been
developed in the PUFFIN project. These two methodologies each focus on one of the two
basic properties of PUFs: reliability and uniqueness. This has resulted in the following new
methodologies for evaluating PUF behaviour:

• A new approach for modelling noise behaviour of PUFs (reliability), and

• a new method for deriving extractable entropy for PUF instances (focussed on unique-
ness, but also taking reliability into account).

Both of these new methodologies are described in detail in two scientific publications that are
attached to this deliverable as appendices.

1

2 PUFFIN — Physically unclonable functions found in standard PC components

Chapter 2

Preliminary Analysis of PUFs

2.1 Introduction

In the first period of the PUFFIN project WP2 has received PUF measurements from WP1
for analysis. Up to now all measured PUF behaviour has been derived from SRAM memories
of commercially available devices. A term generally used for these devices is Commercial Off-
The-Shelve (COTS) devices. SRAM that has been analysed so far in the PUFFIN project
originates from the following platforms:

• Ainol Novo 7 tablets,

• Texas Instruments MSP430F5308 microcontrollers,

• Microchip PIC16F1825 microcontrollers,

• ST STM32F100R8 microcontrollers,

• ST STM32F100RB microcontrollers,

• Atmel ATMega328p microcontrollers,

• NVIDIA GeForce GTX 295 graphics card, and

• Pandaboards (computer development platform containing either Texas Instruments
OMAP4430 or 4460, see www.pandaboard.org for more information).

Deliverable D1.1 of the PUFFIN project explains which SRAM memories of these platforms
have been used for these measurements and how data has been extracted.

Note: Some platforms from D1.1 have not been analysed yet, because the research and
measurements performed in WP1 for these platforms are not yet considered to be sufficiently
mature. Once these measurements are more mature, these platforms will be added to the
overview.

3

www.pandaboard.org

4 PUFFIN — Physically unclonable functions found in standard PC components

2.2 Test Descriptions

The following tests have been performed to evaluate reliability and uniqueness of the PUFs
from devices of the different platforms:

• Repeated Start-up Test (RST),

• Temperature Cycle Test (TCT),

• Between-class Hamming Distance Test (BCHDT), and

• Hamming Weight Test (HWT).

The following sections provide a description for each of these tests. The Temperature Cycle
Test is the only test that has not been performed on all platforms for the following reasons:

• Some platforms (tablets, GPUs, and Pandaboards) cannot be measured under extreme
temperature conditions, because some components of these platforms will not be able
survive extreme heat or cold.

• Microcontrollers do survive exposure to extreme temperatures; we have decided to use
one of the microcontroller platforms as an example in the Temperature Cycle Test.

Based on these reasons, TI’s MSP430F5308 microcontroller has been chosen for the Temper-
ature Cycle Test. All other devices have been tested with the remaining three tests.

2.2.1 Repeated Start-up Test

This basic test measures the noise characteristics of the PUF candidates by comparing several
PUF responses within-class, i.e., of the same device. Each device of a platform containing
a PUF (found in WP1) is measured repeatedly. The measurements are performed “on the
desk” under room temperature and uncontrolled humidity conditions. The PUF response of
each measurement is stored on a hard drive and later analysed by software.

One PUF measurement (usually the first one) of each device is considered as enrolment
measurement. A Matlab script is used to compare (fractional) Hamming distances between
the enrolment measurement and all other PUF responses of the device. The Hamming dis-
tances between the PUF measurements must be small in order to identify a device with high
reliability.

2.2.2 Temperature Cycle Test

This within-class test measures noise characteristics and thus the reliability of the PUFs for
a specific platform under different ambient temperatures. The PUF response of a device is
measured repeatedly under well defined ambient conditions and each measurement is stored
on a hard disk and finally analysed by software. Measurement files are sorted into folders
according to the conditions at which they were taken (e.g., folder names ‘Temp-30’, ‘Temp25’,
‘Temp90’ indicate that measurements stored in these folders were taken at −30oC, +25oC
and +90oC temperature respectively).

An enrolment measurement of each device is taken at +25oC. A Matlab script is used
to compare the (fractional) Hamming distances between the enrolment measurement and the

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 5

other measured PUF responses of the device. A PUF is considered reliable if the Hamming
distances to the enrolment measurement are small under all ambient conditions.

As described above, this test has only been performed on TI’s MSP430F5308 microcon-
troller.

2.2.3 Between-Class Hamming Distance Test

This test investigates the uniqueness of PUF responses by comparing PUF enrolment mea-
surements (from the Repeated Start-up Test) between-class, i.e., between several devices of
the same platform.

A Matlab script is used to compare the Hamming distances between the enrolment mea-
surements of the devices. Each device can only be uniquely identified if there is only a small
correlation between PUFs from different devices, i.e., if the fractional Hamming distances
between the enrolment measurements have a Gaussian distribution with a mean value close
to 50%.

2.2.4 Hamming Weight Test

This test is performed using either the measurements from the Repeated Start-up Test or
from the Temperature Cycle Test. It investigates whether PUF responses have a bias to
either 0 or 1 during start-up (possibly at different temperatures).

A Matlab script is used to calculate the (fractional) Hamming weight of all measured PUF
responses of a device. The Hamming weight is an indication for bias in the PUF responses:
Non-biased PUF responses have an even distribution in zero and non-zero bits. Therefore,
the fractional Hamming weight of the measurements should be close to 50%, indicating that
about half the bits of the response are 0 and the other half are 1.

6 PUFFIN — Physically unclonable functions found in standard PC components

2.3 Test Results

2.3.1 Ainol Novo 7 Tablet

Information

Number of devices measured: 7
Number of measurements per device: 5
PUF type: SRAM PUF
PUF size: 1KB

Repeated Start-up Test

Figure 2.3.1: Within-class Hamming distance of SRAM in Ainol Novo 7 tablets.

Figure 2.3.1 shows the results from the 5 measurements of the Repeated Start-up Test
for the seven Ainol Novo 7 tablets (each individual line representing one of the devices).
For each device, the first measurement has been used for enrolment (so it has 0% noise);
all other measurements are compared to this enrolment measurement. The figure shows
that the maximum within-class Hamming distance for the devices of this platform (at room
temperature) is less than 7%. This amount of noise can easily be corrected using commonly
known Fuzzy Extractors. Therefore, these devices pass the Repeated Start-up Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 7

Between-Class Hamming Distance Test

Figure 2.3.2: Between-class versus within-class fractional Hamming distances of SRAM in
Ainol Novo 7 tablet measurements.

Figure 2.3.2 compares the results from the Repeated Start-up Test (in black) to the results
of the Between-Class Hamming Distance Test (in red) for the seven Ainol Novo 7 tablets.
The Hamming distance between different devices is much higher than the noise measured for
each individual device. This indicates that each device can be uniquely identified based on
its PUF responses.

In more detail: We calculated 7 × 6 : 2 = 21 fractional Hamming distances between
the seven devices. These 21 distances fit to a Gaussian distribution with a mean value
of 49.9%. This is an indication that there is very little correlation between the PUF responses
from different devices, which makes them suitable as an input for commonly known Fuzzy
Extractors. Therefore, these devices pass the Between-Class Hamming Distance
Test.

8 PUFFIN — Physically unclonable functions found in standard PC components

Hamming Weight Test

Figure 2.3.3: Fractional Hamming weight of SRAM PUFs in Ainol Novo 7 tablets.

Figure 2.3.3 shows the Hamming weight of 5 measurements from the Repeated Start-up
Test for each of the seven Ainol Novo 7 tablets (each individual line represents one of the
devices). For all devices, the Hamming weight of the measurements is close to 50%, indicating
an equal number of 0’s and 1’s in the PUF responses (also visible in the plotted example PUF
response in Figure 2.3.4). This indicates that these PUF responses are suitable inputs for
commonly known Fuzzy Extractors. Therefore, these devices pass the Hamming Weight
Test.

Figure 2.3.4: Example measurement of an SRAM PUF response from an Ainol Novo 7 tablet.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 9

2.3.2 Texas Instruments MSP430F5308

Information

Number of devices measured: 15
Number of measurements per device: > 1000 (varying per device)
PUF type: SRAM PUF
PUF size: 6KB

Repeated Start-up Test

Figure 2.3.5: Within-class Hamming distance of SRAM in MSP430F5308 measurements.

Figure 2.3.5 shows the results from the measurements of the Repeated Start-up Test for
the 15 Texas Instruments MSP430F5308 microcontrollers (each individual line representing
one of the devices). For each device, the first measurement has been used for enrolment (so
it has 0% noise); all other measurements are compared to this enrolment measurement. The
figure shows that the maximum within-class Hamming distance for these devices (at room
temperature) is less than 5%. This amount of noise can easily be corrected using commonly
known Fuzzy Extractors. Therefore, these devices pass the Repeated Start-up Test.

10 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.6: Within-class Hamming distance of SRAM in MSP430F5308 measured over
different temperatures.

Temperature Cycle Test

Figure 2.3.6 shows the results from the measurements of the Temperature Cycle Test for
the 15 Texas Instruments MSP430F5308 microcontrollers (each individual line representing
one of the devices). PUF responses for all devices have been measured at three different
temperatures: −30oC, +25oC and +90oC. For all devices the first measurement at +25oC
has been used for enrolment (so it has 0% noise); all other measurements are compared to this
enrolment measurement. The figure shows that the maximum within-class Hamming distance
for these devices, over all tested temperatures, is less than 11%. This amount of noise can
easily be corrected using commonly known Fuzzy Extractors. Therefore, these devices pass
the Temperature Cycle Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 11

Figure 2.3.7: Between-class versus within-class Hamming distance of SRAM in MSP430F5308
measurements.

Between-Class Hamming Distance Test

Figure 2.3.7 compares the results from the Repeated Start-up Test (in black) with the re-
sults of the Between-Class Hamming Distance Test (in red) for the 15 Texas Instruments
MSP430F5308 microcontrollers. This figure clearly shows that the Hamming distance be-
tween different devices is much higher than the noise measured for each individual device.
This indicates that the devices can all be uniquely identified based on their PUF responses.

In more detail: We calculated 15 × 14 : 2 = 105 Hamming distances between the 15
devices. These fractional distances fit a Gaussian distribution with a mean value of 46.4%.
Since this value is a bit lower than 50%, this is an indication that there is some correlation
between the PUF responses from different devices, but they should still be suitable as an
input for commonly known Fuzzy Extractors. Therefore, these devices (weakly) pass the
Between-Class Hamming Distance Test.

12 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.8: Hamming weight of SRAM in MSP430F5308 measurements.

Hamming Weight Test

Figure 2.3.8 shows the Hamming weight of the measurements from the Temperature Cy-
cle Test for the 15 Texas Instruments MSP430F5308 microcontrollers (each individual line
representing one of the devices). For all devices, the fractional Hamming weight of the mea-
surements is significantly higher than 50%. This means that there are more 1’s than 0’s in
the PUF responses (also visible in the plotted example PUF response in Figure 2.3.9). This
indicates that these PUF responses will require significant pre-processing before they are suit-
able inputs for commonly known Fuzzy Extractors. This causes some overhead in the size
requirements for the PUF response; however, these requirements can most likely be fulfilled.
Therefore, these devices (weakly) pass the Hamming Weight Test.

Figure 2.3.9: Example of SRAM PUF response from MSP430F5308 measurement.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 13

2.3.3 Microchip PIC16F1825

Information

Number of devices measured: 16
Number of measurements per device: 5
PUF type: SRAM PUF
PUF size: 1KB

Repeated Start-up Test

Figure 2.3.10: Within-class Hamming distance of SRAM in PIC16F1825 measurements.

Figure 2.3.10 shows the results from 5 measurements of the Repeated Start-up Test for
each of the 16 Microchip PIC16F1825 microcontrollers (each individual line representing one
of the devices). For all devices, the first measurement is used for enrolment (so it has 0%
noise). All other measurements are compared to this enrolment measurement. The maximum
within-class Hamming distance for these devices (at room temperature) is below 3%. This
amount of noise can easily be corrected using commonly known Fuzzy Extractors. Therefore,
these devices pass the Repeated Start-up Test.

14 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.11: Between-class versus within-class Hamming distance of SRAM in PIC16F1825
measurements.

Between-Class Hamming Distance Test

Figure 2.3.11 compares the results from the Repeated Start-up Test (in black) to the results
of the Between-Class Hamming Distance Test (in red) for the 16 Microchip PIC16F1825 mi-
crocontrollers. The Hamming distance between different devices is much lower than required
for a PUF implementation.

In more detail: We calculated 16×15 : 2 = 120 Hamming distances between the 16 devices.
These 120 fractional distances fit a Gaussian distribution with a mean value of 34.5%. This
low mean value indicates that there is too much correlation between the PUF responses from
different devices to be suitable as an input for commonly known Fuzzy Extractors. Therefore,
these devices fail the Between-Class Hamming Distance Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 15

Figure 2.3.12: Hamming weight of SRAM in PIC16F1825 measurements.

Hamming Weight Test

Figure 2.3.12 shows the Hamming weight of the 5 measurements from the Repeated Start-up
Test for 15 Texas Instruments MSP430F5308 microcontrollers (each individual line repre-
senting one of the devices). The fractional Hamming weight of the measurements is close to
50%. This does not give any indication for a bias that might have caused the failure of the
Between-Class Hamming Distance Test. However, when examining the PUF responses visu-
ally (see the example PUF response in Figure 2.3.13), it turns out that there is clearly some
bias present: each byte of a response has a preference to have either all bits 0 or all bits 1
(with an alternating pattern). This pattern explains the poor Hamming distance between
devices and highlights the very biased Hamming weights per byte. Therefore, these devices
fail the Hamming Weight Test due to this local biasing.

Figure 2.3.13: Example of SRAM PUF response from PIC16F1825 measurement.

16 PUFFIN — Physically unclonable functions found in standard PC components

2.3.4 ST STM32F100R8

Information

Number of devices measured: 11
Number of measurements per device: 144
PUF type: SRAM PUF
PUF size: 8KB

Repeated Start-up Test

Figure 2.3.14: Within-class Hamming distance of SRAM in STM32F100R8 measurements.

Figure 2.3.14 shows Hamming distance from 144 measurements of the Repeated Start-up
Test for the 11 ST STM32F100R8 microcontrollers (each individual line representing one of
the devices). For all devices, the first measurement has been used for enrolment (so it has
0% noise); all other measurements have been compared to this enrolment measurement. The
maximum within-class Hamming distance for these devices (at room temperature) is less than
6%. This amount of noise can easily be corrected using commonly known Fuzzy Extractors.
Therefore, these devices pass the Repeated Start-up Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 17

Figure 2.3.15: Between-class versus within-class Hamming distance of SRAM in
STM32F100R8 measurements.

Between-Class Hamming Distance Test

Figure 2.3.15 compares the results from the Repeated Start-up Test (in black) to the re-
sults of the Between-Class Hamming Distance Test (in red) for the 11 ST STM32F100R8
microcontrollers. The Hamming distance between different devices is much higher than the
noise measured for each individual device. This indicates that the devices can all be uniquely
identified based on their PUF responses.

In more detail: We calculated 11×10 : 2 = 55 Hamming distances between the 11 devices.
These 55 fractional Hamming distances fit a Gaussian distribution with a mean value of 46.7%.
This is an indication that there is some correlation between the PUF responses from different
devices, but they should still be suitable as an input for commonly known Fuzzy Extractors.
Therefore, these devices (weakly) pass the Between-Class Hamming Distance Test.

18 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.16: Hamming weight of SRAM in STM32F100R8 measurements.

Hamming Weight Test

Figure 2.3.16 shows the Hamming weight of the 144 measurements from the Repeated Start-
up Test for the 11 ST STM32F100R8 microcontrollers (each individual line representing one
of the devices). For all devices, the Hamming weight of the measurements is close to 50%,
i.e., there is an equal number of 0’s and 1’s in the PUF responses (an example PUF response
is plotted in Figure 2.3.17). This indicates that these PUF responses are suitable inputs for
commonly known Fuzzy Extractors. Therefore, these devices pass the Hamming Weight
Test.

Figure 2.3.17: Example of SRAM PUF response from STM32F100R8 measurement.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 19

2.3.5 ST STM32F100RB

Information

Number of devices measured: 11
Number of measurements per device: 51
PUF type: SRAM PUF
PUF size: 8KB

Repeated Start-up Test

Figure 2.3.18: Within-class Hamming distance of SRAM in STM32F100RB measurements.

Figure 2.3.18 shows the Hamming distance from 51 measurements of the Repeated Start-
up Test for the 11 ST STM32F100RB microcontrollers (each individual line representing one
of the devices). For all devices, the first measurement is used for enrolment (so it has 0%
noise); all other measurements are compared to this enrolment measurement. The maximum
within-class Hamming distance for these devices (at room temperature) is less than 7%. This
amount of noise can easily be corrected using commonly known Fuzzy Extractors. Therefore,
these devices pass the Repeated Start-up Test.

20 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.19: Between-class versus within-class Hamming distance of SRAM in
STM32F100RB measurements.

Between-Class Hamming Distance Test

Figure 2.3.19 compares the results from the Repeated Start-up Test (in black) to the re-
sults of the Between-Class Hamming Distance Test (in red) for the 11 ST STM32F100RB
microcontrollers. The Hamming distance between different devices is much higher than the
noise measured for each individual device. This indicates that the devices can all be uniquely
identified based on their PUF responses.

In more detail: We calculated 11×10 : 2 = 55 Hamming distances between the 11 devices.
These 55 fractional distances fit a Gaussian distribution with mean value of 46.8%. This
indicates that there is some correlation between the PUF responses from different devices,
but they should still be suitable as an input for commonly known Fuzzy Extractors. Therefore,
these devices (weakly) pass the Between-Class Hamming Distance Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 21

Figure 2.3.20: Hamming weight of SRAM in STM32F100RB measurements.

Hamming Weight Test

Figure 2.3.20 shows the Hamming weight of the measurements from the Repeated Start-up
Test for the 11 ST STM32F100RB microcontrollers (each individual line representing one of
the devices). For all devices, the Hamming weight of the measurements is close to 50%, i.e.,
there is an equal number of 0’s and 1’s in the PUF responses (an example PUF measurement
is shown in Figure 2.3.21). This indicates that these PUF responses are suitable inputs for
commonly known Fuzzy Extractors. Therefore, these devices pass the Hamming Weight
Test.

Figure 2.3.21: Example of SRAM PUF response from STM32F100RB measurement.

22 PUFFIN — Physically unclonable functions found in standard PC components

2.3.6 Atmel ATMega328p

Information

Number of devices measured: 16
Number of measurements per device: 50
PUF type: SRAM PUF
PUF size: 2KB

Repeated Start-up Test

Figure 2.3.22: Within-class Hamming distance of SRAM in ATMega328p measurements.

Figure 2.3.22 shows 50 measurements of the Repeated Start-up Test for the 16 AT-
Mega328p microcontrollers (each individual line representing one of the devices). For all
devices, the first measurement has been used for enrolment (so it has 0% noise). All other
measurements are compared to the enrolment measurement. The maximum within-class
Hamming distance for these devices (at room temperature) is less than 3%. This amount
of noise can easily be corrected using commonly known Fuzzy Extractors. Therefore, these
devices pass the Repeated Start-up Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 23

Figure 2.3.23: Between-class versus within-class Hamming distance of SRAM in ATMega328p
measurements.

Between-Class Hamming Distance Test

Figure 2.3.23 compares the results from the Repeated Start-up Test (in black) to the results of
the Between-Class Hamming Distance Test (in red) for the 16 ATMega328p microcontrollers.
The Hamming distance between different devices is much higher than the noise measured for
each individual device. This indicates that the devices can all be uniquely identified based
on their PUF responses.

In more detail: We calculated 16×15 : 2 = 120 Hamming distances between the 16 devices.
These 120 distances fit a fractional Gaussian distribution with a mean value of 44.7%. This
is an indication that there is some correlation between the PUF responses from different
devices, but they should still be suitable as an input for commonly known Fuzzy Extractors.
Therefore, these devices (weakly) pass the Between-Class Hamming Distance Test.

24 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.24: Hamming weight of SRAM in ATMega328p measurements.

Hamming Weight Test

Figure 2.3.24 shows the Hamming weight from the 50 measurements of the Repeated Start-up
Test used for the 16 ATMega328p microcontrollers (each individual line representing one of
the devices). For all devices, the Hamming weight of the measurements is significantly higher
than 50% (around 65%), i.e., there are more 1’s than 0’s in the PUF responses (an example
PUF response is shown in Figure 2.3.25). This indicates that these PUF responses require
some pre-processing in order to be suitable inputs for commonly known Fuzzy Extractors.
This causes some overhead in the size requirements for the PUF response; however, these
requirements can most likely be fulfilled. Therefore, these devices (weakly) pass the
Hamming Weight Test.

Figure 2.3.25: Example of SRAM PUF response from ATMega328p measurement.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 25

2.3.7 NVIDIA GeForce GTX 295

Information

Number of devices measured: 4
Number of measurements per device: 12
PUF type: SRAM PUF
PUF size: 7680 bits

Repeated Start-up Test

Figure 2.3.26: Within-class Hamming distance of SRAM in GTX 295 measurements.

Figure 2.3.26 shows the Hamming distances of 12 measurements of the Repeated Start-up
Test on the 4 GTX 295 GPUs (each individual line representing one of the devices). The
first measurement has been used for enrolment (so it has 0% noise); all other measurements
are compared to this enrolment measurement. The maximum within-class Hamming distance
for these devices (at room temperature) is less than 7%. This amount of noise can easily
be corrected using commonly known Fuzzy Extractors. Therefore, these devices pass the
Repeated Start-up Test.

26 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.27: Between-class versus within-class Hamming distance of SRAM in GTX 295
measurements.

Between-Class Hamming Distance Test

Figure 2.3.27 compares the results from the Repeated Start-up Test (in black) to the results of
the Between-Class Hamming Distance Test (in red) for the 4 GTX 295 GPUs. The Hamming
distance between different devices is much higher than the noise measured for each individual
device. This indicates that the devices can all be uniquely identified based on their PUF
responses.

In more detail: We calculated 4 × 3 : 2 = 6 Hamming distances between the 4 devices.
These 4 distances cannot be fitted by a Gaussian distribution, because the number of values is
not large enough for a proper Gaussian fit. The distances between the devices vary from 39.8%
to 44.0%. This is an indication that there is some correlation between the PUF responses from
different devices, but they should still be suitable as an input for commonly known Fuzzy
Extractors. Therefore, these devices (weakly) pass the Between-Class Hamming
Distance Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 27

Figure 2.3.28: Hamming weight of SRAM in GTX 295 measurements.

Hamming Weight Test

Figure 2.3.28 shows the Hamming weight of the 12 measurements from the Repeated Start-up
Test for the 4 GTX 295 GPUs (each individual line representing one of the devices). For all
devices, the fractional Hamming weight of the measurements is higher than 50% (around 55%),
i.e., there are more 1’s than 0’s in the PUF responses (an example PUF response is shown in
Figure 2.3.29). This indicates that these PUF responses require some pre-processing in order
to be suitable inputs for commonly known Fuzzy Extractors. This causes some overhead in
the size requirements for the PUF response; however, these requirements can most likely be
fulfilled. Therefore, these devices (weakly) pass the Hamming Weight Test.

Figure 2.3.29: Example of SRAM PUF response from GTX 295 measurement.

28 PUFFIN — Physically unclonable functions found in standard PC components

2.3.8 Pandaboard

Information

Number of devices measured: 5
Number of measurements per device: 1000
PUF type: SRAM PUF
PUF size: 16KB

Repeated Start-up Test

Figure 2.3.30: Within-class Hamming distance of SRAM in Pandaboard measurements.

Figure 2.3.30 shows the Hamming distances from the 1000 measurements of the Repeated
Start-up Test for the 5 Pandaboards (each individual line representing one of the devices).
The first measurement of each device has been used for enrolment (so it has 0% noise); all
other measurements are compared to this enrolment measurement. The maximum within-
class Hamming distance for these devices (at room temperature) is less than 5%. This amount
of noise can easily be corrected using commonly known Fuzzy Extractors. Therefore, these
devices pass the Repeated Start-up Test.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 29

Figure 2.3.31: Between-class versus within-class Hamming distance of SRAM in Pandaboard
measurements.

Between-Class Hamming Distance Test

Figure 2.3.31 compares the results from the Repeated Start-up Test (in black) to the results
of the Between-Class Hamming Distance Test (in red) for the Pandaboards. The Hamming
distance between different devices is much higher than the noise measured for each individual
device. This indicates that the devices can all be uniquely identified based on their PUF
responses.

In more detail: We calculated 5 × 4 : 2 = 10 Hamming distances between the 5 devices.
These 10 distances cannot be fitted by a Gaussian distribution, because the number of values
is not big enough for a proper Gaussian fit. The distances between the devices vary from 49.7%
to 50.1% which shows that there is almost no correlation between the PUF responses from
different devices. This indicates that they are suitable inputs for commonly known Fuzzy
Extractors. Therefore, these devices pass the Between-Class Hamming Distance
Test.

30 PUFFIN — Physically unclonable functions found in standard PC components

Figure 2.3.32: Hamming weight of SRAM in Pandaboard measurements.

Hamming Weight Test

Figure 2.3.32 shows the Hamming weight of the measurements from the Repeated Start-
up Test for the 5 Pandaboards (each individual line representing one of the devices). The
fractional Hamming weight of the measurements from most of the devices is close to 50%
(although it varies slightly between devices), i.e., there is an equal number of 0’s and 1’s
in the PUF responses (Figure 2.3.33 shows a plot of an example PUF measurement). This
indicates that these PUF responses are suitable inputs for commonly known Fuzzy Extractors.
Therefore, these devices pass the Hamming Weight Test.

Figure 2.3.33: Example of SRAM PUF response from Pandaboard measurement.

D2.1 — Scientific contribution of WP2, part 1 Analysis and Qualification 31

2.4 Conclusions

Platform Quantity RST TCT BCHDT HWT

Ainol Novo 7 7 Pass n.a. Pass Pass
MSP430F5308 15 Pass Pass (Weak) Pass (Weak) Pass
PIC16F1825 16 Pass n.a. Fail Fail
STM32F100R8 11 Pass n.a. (Weak) Pass Pass
STM32F100RB 11 Pass n.a. (Weak) Pass Pass
ATMega328p 16 Pass n.a. (Weak) Pass (Weak) Pass
GTX 295 4 Pass n.a. (Weak) Pass (Weak) Pass
Pandaboard 5 Pass n.a. Pass Pass

Table 2.4.1: Test results for the different devices

Table 2.4.1 gives an overview of the test results from the previous section. The most im-
portant conclusion that can be drawn from these results is that PUF behaviour can be found
in the SRAMs of many different commercially available platforms. Most of the SRAMs that
have been measured show promising results and therefore are suitable for use in PUF imple-
mentations; however, the amount of pre-processing required on the data will vary between
the platforms.

From the platforms that we have investigated up to now, the PIC16F1825 microcontroller
appears to be the only one where the SRAM measurements are not usable for PUF applica-
tions. Due to severe (bytewise) biasing of the PUF responses, these SRAMs do not provide
enough entropy/uniqueness to be the basis for a proper PUF implementation. Based on our
practical experience, the most common reason for biased start-up patterns is due to the sup-
ply voltage ramp-up curve on the SRAM cells. Unfortunately, we can only measure the curve
on the external pins of the devices and we do not know what happens internally with the
supply voltage before it reaches the SRAM. It is possible that there are (analog) components
connected to the power supply, which distort the ramp-up on the SRAM. Microchip does not
provide information about their silicon implementation, which makes it impossible for us to
investigate what is happening inside the devices.

Out of the platforms that do pass the described tests, the Pandaboard might be the
most interesting candidate for implementing prototypes during a later phase of the PUFFIN
project. This computer development platform offers a completely open-source Linux/Android
development environment, including the possibility to modify its bootloader. This enables us
to obtain PUF data from the SRAM for use even during the boot sequence of the board. At
this moment we do not have very much statistics (yet) on the PUF behaviour of the SRAM
of this board, because we only have access to 5 boards. However, the results from these 5
boards do seem promising. During the next phase of the PUFFIN project the possibilities of
this board will be studied more thoroughly.

All results from this WP2 work have been communicated to WP3 such that the obtained
results can be used as input for the use-case implementations that will be developed in WP3.

32 PUFFIN — Physically unclonable functions found in standard PC components

Chapter 3

New methods for PUF analysis

Besides analysing the PUF measurements from WP1, work in WP2 has also been focussed
on developing new methods for analysing PUF data. For this purpose two new analysis
methodologies have been developed during the first phase of the PUFFIN project.

The first new method focusses on analysing PUF reliability. The work introduces a new
reliability model taking an observed heterogeneous nature of PUF cells into account. A sub-
stantial experimental validation has demonstrated that the new predicted distributions from
this model describe the empirically observed data statistics almost perfectly, even considering
sensitivity to operational temperature. This will allow to study PUF failure behaviour in full
detail, including the average and the worst case probabilities.

Besides for reliability, also a new methodology for evaluating the uniqueness of PUFs
has been developed within PUFFIN. The aim of this work was to develop and implement a
new methodology for accurately estimating the entropy of PUFs. This novel method esti-
mates the extractable entropy by calculating the mutual information between enrolment and
reconstruction measurements.

Two papers have been written about these two new methodologies for publication:

• “An Accurate Probabilistic Reliability Model for Silicon PUFs”, Roel Maes (Intrinsic-
ID). Published at Workshop on Cryptographic Hardware and Embedded Systems 2013
(CHES 2013).

• “Bias-based modeling and entropy analysis of PUFs”, Robbert van den Berg (Eindhoven
University of Technology), Boris Škorić (Eindhoven University of Technology), and Vin-
cent van der Leest (Intrinsic-ID). Accepted for publication at International Workshop
on Trustworthy Embedded Devices 2013 (TrustED 2013).

Both of these papers have used PUF data from the FP7 project UNIQUE (contract number:
238811) for evaluating the performance of their proposed methodologies. Reason for this is
the fact that the UNIQUE database contains the biggest set of PUF data currently available,
which makes the evaluation statistically relevant. The dataset as gathered by PUFFIN is
currently simply not sufficient for this purpose yet.

To provide a complete overview of the work that has been performed on (as well as the
results from) developing the new analysis methodologies, the above mentioned papers have
been attached to this deliverable as appendices.

33

34 PUFFIN — Physically unclonable functions found in standard PC components

Appendix A

Paper: “An Accurate Probabilistic
Reliability Model for Silicon PUFs”

Author: Roel Maes (Intrinsic-ID)
Venue: Workshop on Cryptographic Hardware and Embedded Systems (CHES) 2013
Date: August 18th - August 22nd, 2013

Status: Published

35

36 PUFFIN — Physically unclonable functions found in standard PC components

An Accurate Probabilistic Reliability Model for
Silicon PUFs ∗

Roel Maes

Intrinsic-ID, Eindhoven, the Netherlands
roel.maes@intrinsic-id.com

Abstract. The power of an accurate model for describing a physical
process or designing a physical system is beyond doubt. The currently
used reliability model for physically unclonable functions (PUFs) assumes
an equally likely error for every evaluation of every PUF response bit.
This limits an accurate description since experiments show that certain
responses are more error-prone than others, but this fixed error rate model
only captures average case behavior. We introduce a new PUF reliability
model taking this observed heterogeneous nature of PUF cells into account.
A substantial experimental validation demonstrates that the new predicted
distributions describe the empirically observed data statistics almost
perfectly, even considering sensitivity to operational temperature. This
allows to study PUF failure behavior in full detail, including the average
and the worst case probabilities. This is an invaluable tool for the future
design of more efficient and better adapted PUFs and PUF-based systems.

1 Introduction

After a decade of ongoing scientific research and sustained technical de-
velopment, silicon PUF technology [1,2] is steadily finding its way into
electronic products [3,4]. To meet the high reliability and security con-
straints imposed by such applications, bare silicon PUFs don’t operate
on their own but are embedded in a system. The fundamental physical
security of such a system originates from the PUF implementation, but
considerable post-processing is involved to meet the overall requirements
and facilitate the intended application, e.g. key storage. Constructing a
PUF system is an intricate design exercise since it requires balancing
typically opposing goals between reliability, security and efficiency.

The starting point of a PUF system design is evidently the probabilistic
behavior of the PUF itself, both regarding reliability (error behavior) and
security (unpredictability behavior). The more insight one has in these

∗This work has been supported by the European Commission through the ICT
program under contract INFSO-ICT-284833 (PUFFIN) and by the EUREKA Network
through the CATRENE program under contract CA-403 (RELY).

details, the better one is able to fine tune design choices, and the more
confidence one has in the obtained results. To consistently deal with a
PUF’s probabilistic behavior, an accurate model which closely fits empirical
statistics is of great importance. Such a model should be sufficiently generic
to confidently extrapolate predictions to unobserved points and to work
with a variety of PUF constructions. When available, it is an indispensable
tool for analyzing the design space of a PUF system and converging on
an optimized solution. The main focus of this work is the development
and analysis of a more accurate and generic reliability model for silicon
PUFs than the one in use today, and a demonstration of its advantages.

Related Work. The commonly used PUF reliability model, e.g. in [2,5,6,7,8,9]
and many others, is that of a fixed error rate, i.e. each evaluation of each
response bit is assumed equally likely to be wrong. Many cell-individual
details are lost by reducing the reliability behavior to a single average-case
parameter. A first extension of this model, e.g. as used in [10,11,12], is the
binary differentiation between stable and unstable PUF response bits. This
idea is generalized in [13] which demonstrates that PUF cell reliabilities are
continuously distributed, from very unreliable to almost perfectly stable.

Contributions. In this work, we start from and greatly expand on the
model as proposed in [13], to describe PUF reliability behavior in a much
more accurate and detailed manner as has been done up to now. The basic
model from [13] is modified to more realistically describe error-behavior,
and extended to take environmental dependencies like temperature into
account. This new model is extensively validated on reliability data from
measurements of PUFs implemented in 65nm CMOS. The fit between
predicted distributions and empirical statistics is strikingly accurate at
all measured temperatures from −40◦C to +85◦C. Moreover, the model
proves to be very generic by being extremely accurate for different types
of memory-based PUF types, like the SRAM PUF [2], the buskeeper
PUF [14] and the D Flip-flop PUF [15], as well as for the delay-based
arbiter PUF [16]. We also demonstrate the gained insight offered by such
an accurate model, by analyzing the implications for key generation. This
clearly shows the limitations of the old fixed error rate model, and the
added value of designing a PUF system using the new model.

Overview. Sect. 2 introduces the newly proposed model, motivates the
assumed relations, and derives the hypothesized distribution functions.
The model’s accuracy is consequently validated in Sect. 3 by fitting it
on empirical data from actual silicon PUF measurements. The gained

insights of the new model and their consequences for PUFs and PUF-based
applications are discussed in Sect. 4. Finally, we identify the potential for
future work based on these findings and conclude in Sect. 5.

2 Model Description

2.1 Notation and Preliminaries

Without loss of generality we consider silicon PUFs with single-bit re-
sponses. For the sake of clarity, the presented model is introduced in terms
of memory-based PUFs, where each bit is produced by an individual (mem-
ory) PUF cell.1 However, as demonstrated, the applicability of the model
is certainly not limited to memory-based PUFs, but is also particularly
accurate in describing the reliability behavior of delay-based silicon PUFs.

Variable Notation. Most of the model’s variables are random in nature. We
distinguish between random values sampled once for a particular PUF cell
i (upon creation) and remain fixed for the cell’s entire lifetime, which are
denoted with subscript indexing (mi), and others which are resampled every
time the cell is evaluated, which are denoted with superscript indexing
(n(j)
i for evalutation j of cell i). Random variables in general are denoted

as capital literals, e.g. M is the random variable which is sampled to a
value mi for cell i, according to the distribution of M .

Distribution Functions. The distribution of a random variable X is char-
acterized by its probability density function (pdfX (x)) and/or its cumu-
lative distribution function (cdfX (x)). For discrete random variables, the
probability density function degenerates to a probability mass function
(pmfX (x)). Two basic distributions used in this work are the (stan-
dard) normal distribution (pdfX (x) = ϕ (x) and cdfX (x) = Φ (x)) and
the binomial distribution (pmfX (x) = fbino (x;n, p) and cdfX (x) =
Fbino (x;n, p)). We refer to App. A for details on these distributions.

2.2 The “Old” Model: PUF Response with Fixed Error Rate

We first briefly discuss the probabilistic model which is thus far used in
the majority of related literature (e.g. in [2,5,6,7,8,9]) for assessing the
reliability of PUFs and their applications.

1We refer to the literature on memory-based PUFs and silicon PUFs in general for
more details on their operation and implementation. See e.g. [17] for an overview.

Rationale. The foundation of the old model is the assumption that all
cells of a PUF are homogeneous, i.e. every cell in the PUF is equally likely
to produce an error at any time. This means the reliability behavior of the
PUF as a whole is described by a single fixed parameter: the (bit) error
rate (pe). This is the probability that any evaluation of any cell differs from
its enrolled response, and is assumed equal to the average-case behavior
averaged over many cells.

Limitations. Though convenient to use, this model’s limitations are evident
when looking at experimental PUF results. A typical PUF instantiation
exhibits unstable and stable cells, i.e. some cells are more likely to produce
an error while other cells are hardly ever wrong. This behavior is not
captured by the old model which treats every cell in the same way. However,
as shown in Sect. 4, it is wise to take this observation into account when
designing PUF-based applications. The main motivation behind the newly
introduced model is to accurately capture this cell-specific behavior.

2.3 The “New” Model: Cell-Specific Error-Probabilities

In line with the experimental observation that some PUF cells are more
error-prone than others, the foundation of the new model lies in the
assumed cell heterogenity, i.c. every cell in a PUF has an individual error-
probability. An early form of this basic idea was introduced in [13] and
serves as a starting point for the new model presented here.

Hidden Variable Model. The implied approach of [13], which we make
explicit, is that of a hidden variable model. Basically, it is assumed that
the observable variables of a PUF cell which describe its observable behav-
ior, are governed by underlying hidden variables. By assuming plausible
distributions for the hidden variables, the resulting distributions of the
observable variables are derived and validated against experimental data.

The Observable Variables describe the probabilistic behavior of an evalu-
ation (j) of a PUF cell i to a response bit value r(j)

i ∈ {0, 1} (a random
sampling of Ri):

– The One-Probability (pi) of a cell i is the probability that it returns ‘1’
upon a random evaluation: pi

def= Pr (Ri = 1). The one-probability is
itself a random variable P randomly sampled to a value pi ∈ (0, 1) for
a cell i.

– The Error-Probability (pe,i) of a cell i is the probability that a random
evalutation differs from an earlier recorded evaluation of that cell during
an enrollment phase2: pe,i

def= Pr
(
Ri 6= renroll

i

)
. The error-probability

is itself a random variable Pe randomly sampled to a value pe,i ∈ (0, 1).

The Hidden Variables are abstractions of underlying physical (electrical)
processes in a silicon PUF cell circuit. We do not consider low-level physical
details explicitly to avoid complex simulations and to maintain a generic
model. The used hidden variables are regarded as generic and approximated
lumped versions of underlying measurable physical quantities:

– The Process Variable (mi) quantifies the accumulated effect of process
variations on a cell’s internals, introduced during manufacturing. This
is a random variable (M), sampled at a cell’s creation time, according
to a distribution determined by the manufacturing process.

– The Noise Variable (n(j)
i) quantifies the accumulated effect of random

noise on a cell’s internals during evaluation. This is a random vari-
able (Ni), resampled for every evaluation of the cell, according to a
distribution determined by the cell’s susceptibility to noise.

The Model Relation is the fundamental connection between hidden and
observable variables, from which all further conclusions are derived:

r
(j)
i =

{
0 , if mi + n

(j)
i ≤ t ,

1 , if mi + n
(j)
i > t .

(1)

The implied assumptions of this relation are: i) that the hidden variables are
additive,3 and ii) that the evaluation outcome is the result of a comparison
with a constant threshold parameter t. The relation for the one-probability
is directly derived from (1) as: pi = Pr (mi +Ni > t) = 1−cdfNi (t−mi).

Distributions of the New Model. Since both hidden variables are
considered lumped physical quantities, a normal distribution is a motivated
assumption for both: M ∼ N (µM , σ2

M), and Ni ∼ N (0, σ2
N). For ease

of notation, the parameters λ1 = σN/σM , and λ2 = (t− µM)/σM are used.
2In [13], error-probability is defined with respect to a cell’s most-likely outcome

which is not representative for the realistic use of a PUF. Therefore, we consider a
random enrollment instead: renroll

i is randomly sampled according to the one-probability
pi, and can (coincidentally) be an unlikely outcome for the considered cell

3This is intuitively justified by considering that the hidden variables are of an
electrical nature, i.e. voltages or currents. Additivity then follows from Kirchoff’s laws.

Based on these assumed distributions, the resulting observable variable
distributions are derived by employing the model relation as expressed in
(1). The one-probability distribution was already derived in [13]:4

cdfP (x) = Φ
(
λ1Φ

−1 (x) + λ2
)
. (2)

The detailed derivation of the new error-probability distribution is pre-
sented in App. B.1 and results in:5

cdfPe (x) = λ1 ·
∫ Φ−1(x)

−∞
Φ (−u) · (ϕ (λ1u+ λ2) + ϕ (λ1u− λ2)) du . (3)

2.4 Modeling Temperature Dependence
From many PUF experiments (e.g. in [18]) it is clear that the operating
conditions of a silicon PUF, such as temperature and voltage, have a
noticeable impact on response behavior. At increasingly different conditions
this even becomes the primary source of unreliability, much more so than
instantaneous random noise. To realistically describe a PUF cell’s error-
behavior we incorporate these effects in the new model. This is done for
temperature, which typically has the largest impact on PUF reliability [18].6

Hidden Variable Model: Temperature Extension. The basic hid-
den variable model from Sect. 2.3 is extended with a new hidden vari-
able quantifying a cell’s sensitivity to temperature: the temperature
dependence (di). Since different cells react differently to temperature
changes, this is a cell-specific value randomly sampled at manufactur-
ing time. The observable variables are straightforwardly extended to ex-
press temperature dependence: pi(T) = Pr (Ri(T) = 1) and pe,i(T ;Tref) =
Pr
(
Ri(T) 6= renroll

i (Tref)
)
. Note that error-probability depends on two

temperatures, at enrollment (Tref) and at reconstruction (T).

The Temperature Model Relation extends the additive threshold relation
of the new model as given by (1) with a temperature dependent term.
This relation assumes a linear dependence on the (absolute) temperature
with a cell-dependent sensitivity quantified by di:

r
(j)
i (T) =

{
0 , if mi + n

(j)
i + di · T ≤ t ,

1 , if mi + n
(j)
i + di · T > t .

(4)

4Since P and Pe are probabilities, cdfP (x) and cdfPe (x) are only defined for
x ∈ (0, 1).

5This and following integral expressions are evaluated using numerical methods.
6Other conditions can be equivalently modelled but are omitted due to lack of space.

Distribution of the Temperature Model. For the temperature de-
pendence variable we also assume a normal distribution: D ∼ N (0, σ2

D). A
third model parameter is introduced as θ = σN/σD. Following the tempera-
ture model relation expressed by (4), the distribution of the temperature-
dependent error-probabilities becomes:

cdfPe(T ;Tref) (x) = λ1θ

|∆T | ·
∫ Φ−1(x)

−∞

∫ +∞

−∞

[
Φ (−u)ϕ

(
θ v−u|∆T |

)
+

Φ (u)ϕ
(
θ v+u
|∆T |

)]
· ϕ (λ1u+ λ2) dudv . (5)

The complete derivation is given in App. B.2. We introduced∆T = T−Tref,
and (5) is only defined for ∆T 6= 0. In case T = Tref, the limiting case of
(5) for ∆T → 0 reverts to (3).

3 Experimental Validation

We assess the validity of the assumptions made in Sect. 2 by fitting the pre-
dicted error-probability distribution to empirically observed statistics. For
this purpose we use the extensive experimental PUF data set originating
from the UNIQUE project [19], of which the initial analysis was presented
in [18,20]. This data set was acquired from 192 ASICs manufactured in
65nm CMOS, each implementing six silicon PUF types. We applied our
model in particular to the SRAM, D flip-flop, buskeeper and arbiter PUFs.

3.1 From Error-Probability to Error-Count

The error-probability of a particular PUF cell can be estimated by counting
the number of errors in a number of cell evaluations and dividing it by
that number. However, since the majority of cells typically has an error-
probability very close to 0, this estimate is rather inaccurate when the
number of evaluations is limited. E.g., based on 100 measurements of cell i
which are all error-free, it is impossible to differentiate between pe,i = 10−3

or pe,i = 10−6 or even smaller. This inaccuracy hampers an accurate fit
of the model, especially in the distribution tails (close to 0 and 1) which
happen to be the most interesting parts. To overcome this problem we
introduce a variable closely related to the error-probability but directly
observable in experimental data without estimation accuracy problems:
the error-count s(n)

e,i is the number of evaluations in n measurements of cell
i which differ from an enrollment response bit for that cell. By consequence,

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

Error−count in n = 59 evaluations: x

E
rr

or
−

co
un

t d
is

tr
ib

ut
io

n:
 p

m
f S

(5
9)
(x

)

Empirical Distribution
MSE Fit of Hypothesized Distribution

0.06% of SRAM PUF cells are
always wrong in 59 evaluations

77.87% of SRAM PUF cells never
produce an error in 59 evaluations

0.20% of SRAM PUF cells are wrong
about half the time in 59 evaluations

Fig. 1. Fit of pmf
S

(59)
e

(x) on empirical SRAM PUF data at 25◦C.

the value of s(n)
e,i is also a random value sampled (at a given temperature

T), according to the discrete distribution characterized by:

pmf
S

(n)
e (T ;Tref)

(x) =
∫ 1

0
fbino (x;n, u) · pdfPe(T ;Tref) (u) du . (6)

In this section, we focus on fitting this distribution to the error statistics of
the experimental PUF data. The expression for pdfPe(T ;Tref) (u) is obtained
by differentiating (3) (if T = Tref) or (5) (if T 6= Tref) and is listed for
completeness in App. B.2.

3.2 Fitting the Error-Count Distrution

Fitting (λ1, λ2) at Tref = 25◦C. The first experimental data set we
use for fitting the parameters (λ1, λ2) consists of 60 evaluations of 65,536
cells from 768 identical but distinct SRAM PUF instantiations7 at a fixed
temperature of Tref = 25◦C. This totals to 768 × 65,536 = 50,331,648
distinct but assumably identically implemented SRAM PUF cells all
evaluated 60 times. We randomly pick one enrollment response and 59
reconstruction evaluations from which we calculate the error-count s(59)

e,i

for each PUF cell i with respect to its enrollment value. From these
50,331,648 randomly sampled error-count values the empirical distribution
of S(59)

e is calculated. If the model from Sect. 2.3 is accurate, then the
hypothesized distribution of S(59)

e as characterized by (6) should closely
fit the empirical histogram. We perform a non-linear optimization over
(λ1, λ2) using the Levenberg-Marquardt algorithm to minimize the mean

7The 768 SRAM PUFs are implemented on 192 ASICs, with 4 instances per chip.

Table 1. Fit results of pmf
S

(n)
e

(x) on empirical data of different PUF types at 25◦C.

PUF Type Silicon PUF MSE of fit λ1 λ2

Memory-based SRAM PUF 4.467 · 10−9 0.1213 0.0210
Memory-based Buskeeper PUF 5.760 · 10−10 0.0929 0.0340
Memory-based D Flip-flop PUF 1.150 · 10−9 0.0812 0.0381
Delay-based Arbiter PUF 1.843 · 10−9 0.0676 0.0461

squared error (MSE) between the empirical and hypothesized probability
mass functions. The result is shown in Fig. 1 and shows that the function
from (6) yields a strikingly accurate fit. The closest fit was found for
(λ1 = 0.1213 , λ2 = 0.0210) with an MSE of merely 4.467 · 10−9.

To demonstrate the generic nature of the proposed model we also apply
it to other silicon PUF types. We considered the experimental data of 60
evaluations of 8,192 cells from 384 instantiations, for each of the buskeeper,
the D flip-flop and the arbiter PUF8. All fitting results are summarized
in Table 1 and show that the best fit for each of these alternative PUF
types is at least as accurate as that for the SRAM PUF. Remarkably, the
model succeeds in accurately predicting the reliability distributions for
both memory-based as well as delay-based PUFs.

Fitting θ for the SRAM PUF at T = [−40◦C, . . . ,+85◦C]. To
validate the temperature dependence of the model as presented in Sect. 2.4,
we use an experimental data set obtained from 65,536 cells from a limited
set of 20 identical but distinct SRAM PUF instantiations, evaluated 100
times at thirteen temperatures between −40◦C and 85◦C. This gives a
total set of 20× 65,536 = 1,310,720 cells, for each of which we calculate
the error count s(100)

e,i (T ;Tref) at every measured temperature with respect
to a randomly selected enrollment response at Tref = 25◦C. The accuracy
of the temperature model is tested by fitting the hypothesized distribution
of S(100)

e (T ; 25◦C), as characterized by (6), to the empirical distribution of
these 1,310,720 samples at every measured T 6= Tref. We use the estimated
parameter values for (λ1, λ2) from the previous experiment, and perform
an optimization over the remaining parameter θ to minimize the average
MSE between the empirical and hypothesized probability mass functions
over all T . The results are shown in Fig. 2 and demonstrate an accurate fit
at every considered temperature. A minimal average MSE of 1.643 · 10−6

over all temperatures is obtained for θ = 45.0, with the largest deviation
8For the arbiter PUF, a “cell” refers to an evaluation with a random challenge.

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=−40oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

Empirical
Model Fit (θ=45.0)
MSE=5.208e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=−25oC: x

Empirical
Model Fit (θ=45.0)
MSE=3.964e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=−15oC: x

Empirical
Model Fit (θ=45.0)
MSE=2.823e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=−5oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

Empirical
Model Fit (θ=45.0)
MSE=1.779e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=5oC: x

Empirical
Model Fit (θ=45.0)
MSE=8.657e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=15oC: x

Empirical
Model Fit (θ=45.0)
MSE=2.802e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=35oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

Empirical
Model Fit (θ=45.0)
MSE=7.474e−008

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=45oC: x

Empirical
Model Fit (θ=45.0)
MSE=2.532e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=55oC: x

Empirical
Model Fit (θ=45.0)
MSE=4.437e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=65oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

Empirical
Model Fit (θ=45.0)
MSE=3.100e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=75oC: x

Empirical
Model Fit (θ=45.0)
MSE=3.388e−008

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑ Error−count @ T=85oC: x

Empirical
Model Fit (θ=45.0)
MSE=1.893e−007

Fig. 2. Fit of pmf
S

(100)
e (T ;Tref=25◦C) (x) on empirical SRAM PUF data for different T .

at the extreme temperature of −40◦C (MSE of 5.208 · 10−6). Given the
single parameter linear temperature dependence assumed by the model,
as given by (4), the fitted distributions are remarkably accurate.

4 Interpretation and Discussion

We are now able to quantify the consequences of the heterogenity of
individual PUF cells. We first interpret the reliability distribution directly
in Sect. 4.1 and study the effect on PUF-based key generation in Sect. 4.2.

4.1 Interpretation of the New Model Distributions

We consider the experimentally studied SRAM PUF from Sect. 3, with
fitted model parameters: (λ1 = 0.1213, λ2 = 0.0210, θ = 45.0). The
error-probability distribution is analysed at the worst-case temperature
T = −40◦C with respect to enrollment at Tref = 25◦C. The cumulative
distribution function is plotted in Fig. 3. From this graph the heterogene
nature of the individual PUF cells is immediately clear. A remarkable
observation is that about 34% of the SRAM PUF cells have an error-
probability ≤ 10−15, i.e. in any practical setting they are always correct.
On the other hand, about 7% of the cells produce an error in more than

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error−probability @ −40oC w.r.t. enroll @ 25oC: x

 c
d

f P
e(−

40
o C

;2
5o C

)(x
)

=
 P

r(
p e,

i(−
40

o C
;2

5o C
)

≤
x)

~ 34% of SRAM PUF cells
have error probability ≤ 10−15

~ 85% of SRAM PUF cells
have error probability ≤ average

~ 7% of SRAM PUF cells
have error probability > 50%

~ 50% of SRAM PUF cells
have error probability ≤ 10−8

the average error−
probability of an SRAM

PUF cell = 7.70%

Fig. 3. Plot of cdfPe(T=−40◦C;Tref=25◦C) (x) (Eq.(5)) with interpretation.

50% of their evaluations, and about 1% of the cells in more than 99%.9
Another remarkable observation is the discrepancy between the mean
error-probability, which is 7.70%, and the median, which is only in the
order of 10−8. The large majority of errors in a PUF response is hence
caused by a small minority of cells which are wrong very often. This is
exactly the kind of behavior which is oblivious in the fixed-error rate model
(Sect. 2.2) and motivated us to develop a more accurate model (Sect. 2.3).

4.2 Implications for PUF-based Key Generators

Due to their appealing security properties like intrinisic uniqueness and
physical unclonability, PUFs provide a strong physical foundation for secure
key storage. To turn a PUF response into a secure key, post-processing is
required by a key generator to boost the reliability and unpredictability
to the cryptographically required level. For this purpose, a typical PUF-
based key generator deploys a fuzzy extractor as introduced by [21], e.g.
as implemented by [6,22,9,8]. For the analysis presented here, it suffices to
consider a fuzzy extractor as a black box algorithm FE(n, t) which is able
to correct up to t bit errors in an n-bit PUF response. We refer to the
cited literature for in-depth details about a fuzzy extractor’s operation.

From PUF Cell Error-Probabilities to Key Failure Rate. A key
generation fails when the fuzzy extractor is unable to correct all the PUF
response bit errors that simultaneously occur in a single evaluation. The key

9Cells with very high (> 50%) error-probabilities are caused by a cell coincidentally
assuming an unlikely value during enrollment, or alternatively because a cell’s prefered
value changes over the temperature shift between enrollment and reconstruction.

failure rate (pfail) is the probability of this happening and hence becomes:
pfail = Pr (# errors in n response bits > t), and should be very small for
practical applications (typically 10−6 or 10−9). With the fixed error-rate
model (Sect. 2.2), as used in all literature on PUF-based key generators up
to date, the number of errors in an n-bit response is binomially distributed.
This results in a fixed failure rate for every key generator instantiation:

(fixed error-rate) pfail(pe) = 1− Fbino (t;n, pe) . (7)

In the more accurate new model with random error-probabilities (Sect. 2.3),
the number of errors in an n-bit PUF response is no longer binomially dis-
tributed, but Poisson-binomially distributed [23].10 The Poisson-binomial
cumulative distribution function FPB (t; pn

e) is evaluated from the list
of error-probabilities of n PUF cells: pn

e = (pe,1, pe,2, . . . , pe,n). The key
failure rate for FE(n, t) then becomes:

(random error-probabilities) pfail(pn
e) = 1− FPB (t; pn

e) . (8)

Since each of the elements of pn
e is a randomly sampled variable, the

resulting key failure rate will not be a fixed value for every generator, as in
the old model, but also a randomly sampled value for each PUF instance.

The Key Failure Rate Distribution. We consider a key generator
based on the SRAM PUF analysed in Sect. 4.1 (with worst-case reliability
at −40◦C) and a concatenated fuzzy extractor FE(212, 11) ◦ FE(5, 2),11

which extracts a 128-bit key from 1,060 cells, with pfail ≤ 10−9 (on average).
Under the old fixed error-rate model of Sect. 2.2, the constant error

rate is set equal to the mean error-probability over all cells: pe = 7.70%.
The achieved average key failure rate is calculated by applying (7) twice:

pfail = 1− Fbino (11; 212, 1− Fbino (2; 5, 0.0770)) = 1.15 · 10−10 .

This key generator hence produces a 128-bit key with pfail = 1.15 ·10−10 ≤
10−9. However, due the considered fixed-error model, this only holds
for the average case key generator. No statements can be made about
the distribution of failure rates, e.g. it is unclear which fraction of key

10Some details on this lesser known distribution are given in App. A.
11Concatenated fuzzy extractors are typically more efficient than single large fuzzy

extractors [6]. The second fuzzy extractor sees the failure rate of the output of the first
one as the error probability of its input symbols. For completeness, we mention the
error-correcting codes on which the used fuzzy extractors are based: FE(5, 2) uses the
(5, 1)-repetition code and FE(212, 11) the (212, 128)-BCH code.

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Key Failure Rate: x

1−
 c

d
f P

fa
il(x

)
=

 P
r(

P
fa

il >
 x

)

PUF Cell Error Probability Distribution
Intermediate Failure Rate Distribution after FE(5,2)
Key Failure Rate Distribution after FE(5,2) → FE(212,11)

FE(5,2)

FE(212,11)

Average PUF error
probability = 7.70%

Average key failure
rate = 1.15⋅10−10

Average intermediate
failure rate = 0.40%

~ 13 in a million key generators
have a failure rate > 10−6

~ 0.16% of key generators have a
failure rate > 10−9 (outside spec)

99.5% of key generators have a
failure rate ≤ average (overdimensioned)

Fig. 4. Plot of the failure rate distribution of a PUF-based key generator.

generators actually reaches this average, or the required goal of 10−9. This
is a serious limitation which is solved by using the new reliability model.

The random distribution of key failure rates under the new model of
Sect. 2.3 is hard to treat analytically since it involves an n-dimensional
integration over the distribution of pn

e . However, we are able to efficiently
simulate a key generator by randomly picking n error-probabilities accord-
ing to (5) (using inverse transform sampling) and calculating pfail(pn

e) with
(8). By repeating this, we get many random samples of pfail from which
its distribution is estimated. We performed a simulation over 50,000,000
key generators, sampling 1,060 random error probabilities for each one,
and calculating the resulting pfail by applying (8) twice. The resulting
simulated distribution is shown in Fig. 4, together with the initial error-
probability distribution and the distribution of intermediate failure rates
after FE(5, 2) but before FE(212, 11).

Interpretation of the Key Failure Rate Distribution. It is clear
that the expected value of the derived key failure rate distribution under
the new model is equivalent to the fixed key failure rate predicted under
the old fixed error rate model. However, the failure rate distribution as
plotted in Fig. 4 provides much more insight, e.g. it indicates not only
the average failure rate but also the fraction of key generators actually
attaining this average. For the studied example, we see that 99.5% of the
generators operate above average, and even up to 99.84% have a failure
rate within the specied goal of pfail ≤ 10−9. On the other hand, this means
that a very small but non-negligible fraction of 0.16% of the generators
does not meet the specification. This is potentially important information
for the application which is oblivious in the old fixed error rate model!

The small fraction of generators outside spec is not necessarily prob-
lematic. A large portion of that 0.16% still has a very small failure rate,
only not as small as 10−9. Only 13 in a million generators have pfail > 10−6,
and less than 1 in 10 million generators have pfail > 10−4. Whether this
is a problem depends on the envisioned application, such as the num-
ber of devices in the field and the acceptability of a potential failure. In
fact, by taking these considerations into account the system specifications
might even be relaxed, which will result in a more efficient design. E.g., a
PUF-based key generator for a public transport ticketing system, with a
huge number of deployed devices but a low criticality of failure, should be
approached very differently than that for a life-supporting medical implant,
with a relatively small number of devices in the field but an extremely
high criticality of failure. The main advantage of the new model proposed
in this work is exactly that it allows to study this tradeoff, whereas in the
old model one is not aware of it.

5 Conclusion and Future Work

We introduced a more realistic new reliability model for silicon PUFs, which
no longer assumes a single fixed error rate as before but considers ran-
domly distributed cell error-probalities. An hypothetical error-probability
distribution was derived based on plausible assumptions, including the
effects of environmental factors like temperature. Experimental validations
based on a substantial set of silicon PUF measurement data demonstrate a
strikingly accurate fit of the predicted distributions on empirical statistics.
This is a strong indication of the correctness and generic nature of the
newly proposed model. An important implication of the use of this model is
the ability to study the full failure distribution of a PUF-based application,
whereas the old fixed error rate model only displays average case behavior.
This introduces a new dimension in the design of PUF systems, allowing
more focused specifications and better adapted solutions.

The ability to accurately describe the probabilistic reliability behavior
of a silicon PUF spawns various seeds for future research. An obvious
continuation of this work is the inclusion of more external parameters and
conditions, besides temperature, in the model and the distributions; e.g,
supply voltage variation, silicon device aging effects and technology node
dependence. A further experimental validation on alternative silicon PUF
technologies and under varying conditions will strengthen the applicability
of the presented model. The offered possibility to realistically simulate
PUF reliability behavior, as demonstrated in Sect. 4.2, could be of great

interest in the development of PUF-based applications, e.g. when no real
PUF measurements are available. Finally, an interesting parallel research
track is the analysis of unpredictability (entropy) of PUF responses using
the same methods as presented in this work.

References

1. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random
Functions. In: ACM Conference on Computer and Communications Security (ACM
CCS). (2002) 148–160

2. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their
use for IP protection. In: Workshop on Cryptographic Hardware and Embedded
Systems (CHES). (2007) 63–80

3. NXP: PUF - Physical Unclonable Functions: Protecting next-generation Smart Card
ICs with SRAM-based PUFs. http://www.nxp.com/documents/other/75017366.
pdf (February 2013)

4. Microsemi: SmartFusion2 System-on-Chip FPGAs Product Brief. http://www.
actel.com/documents/SmartFusion2_PB.pdf (February 2013)

5. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Design Automation Conference (DAC). (2007) 9–14

6. Bösch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Workshop on Cryptographic Hardware and
Embedded Systems (CHES). (2008) 181–197

7. Maiti, A., Schaumont, P.: Improved Ring Oscillator PUF: An FPGA-friendly Secure
Primitive. IACR Journal of Cryptology 24 (2011) 375–397

8. van der Leest, V., Preneel, B., van der Sluis, E.: Soft Decision Error Correction
for Compact Memory-Based PUFs Using a Single Enrollment. In: Workshop on
Cryptographic Hardware and Embedded Systems (CHES). (2012) 268–282

9. Maes, R., Herrewege, A.V., Verbauwhede, I.: PUFKY: A Fully Functional PUF-
Based Cryptographic Key Generator. In: Workshop on Cryptographic Hardware
and Embedded Systems (CHES). (2012) 302–319

10. Suzuki, D., Shimizu, K.: The Glitch PUF: A New Delay-PUF Architecture Exploiting
Glitch Shapes. In: Workshop on Cryptographic Hardware and Embedded Systems
(CHES). (2010) 366–382

11. Bhargava, M., Cakir, C., Mai, K.: Attack resistant sense amplifier based PUFs
(SA-PUF) with deterministic and controllable reliability of PUF responses. In:
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).
(2010) 106–111

12. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Ruhrmair, U.: The Bistable
Ring PUF: A new architecture for strong Physical Unclonable Functions. In: IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST). (2011)
134–141

13. Maes, R., Tuyls, P., Verbauwhede, I.: Soft Decision Helper Data Algorithm for SRAM
PUFs. In: IEEE Symposium on Information Theory (ISIT). (2009) 2101–2105

14. Simons, P., van der Sluis, E., van der Leest, V.: Buskeeper PUFs, a promising
alternative to D Flip-Flop PUFs. In: IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). (2012) 7–12

15. van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing
(ACM STC). (2010) 53–62

16. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
application. In: Symposium on VLSI Circuits. (2004) 176–159

17. Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the
State of the Art and Future Research Directions. In Sadeghi, A.R., Naccache, D.,
eds.: Towards Hardware-Intrinsic Security. Information Security and Cryptography.
Springer (2010) 3–37

18. Katzenbeisser, S., Kocabas, U., Rozic, V., Sadeghi, A.R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, Fact or Busted? A Security Evaluation of Physically
Unclonable Functions (PUFs) Cast in Silicon. In: Workshop on Cryptographic
Hardware and Embedded Systems (CHES). (2012) 283–301

19. (EU FP7-ICT 238811): UNIQUE Project - Foundations for Forgery-Resistant
Security Hardware. https://www.unique-project.eu/

20. Maes, R., Rozic, V., Verbauwhede, I., Koeberl, P., van der Sluis, E., van der Leest,
V.: Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS.
In: European Solid-State Circuits Conference (ESSCIRC). (2012) 486–489

21. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing
38(1) (March 2008) 97–139

22. Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs. In: Workshop on Cryptographic
Hardware and Embedded Systems (CHES). (2009) 332–347

23. Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial
Probability Density Function. IEEE Transactions on Aerospace and Electronic
Systems 46(2) (april 2010) 803–817

A Basic Probability Distributions

The Binomial Distribution is the discrete distribution of the number of
successes in n Bernoulli trials with constant success probability p. Its
distribution functions are given by:

fbino (x;n, p) =
(n
x

)
px(1− p)n−x , and Fbino (x;n, p) = ∑bxc

i=0
(n
i

)
pi(1− p)n−i .

The Standard Normal Distribution is the normal distribution with zero
mean and unit variance, denoted as: N (0, 1). Any normal distribution can
be expressed as a function of the standard normal: if X ∼ N (µ, σ2), then
X−µ
σ ∼ N (0, 1). Its distribution functions are given by:

ϕ (x) = (2π)−
1
2 e−

x2

2 , and Φ (x) = 1
2
(
1 + erf

(
x√
2

))
.

The Poisson-Binomial Distribution is the discrete distribution of the
number of successes in n Bernoulli trials when the success probability
is no longer constant, but different for every trial. The probability mass
function and cumulative distribution function of the Poisson-binomial
distribution can be efficiently calculated as shown in [23]:

fPB (x; pn
e) = 1

n+1

n∑

i=0
C−i·x

n∏

k=1

(
pe,kC

i + (1− pe,k)
)
, with C = e

j2π
n+1 ,

FPB (x; pn
e) = x+1

n+1 + 1
n+1

n∑

i=1

1−C−i·(x+1)

1−C−i
n∏

k=1

(
pe,kC

i + (1− pe,k)
)
.

B Derivation of New Model Distributions12

All derived distributions concern random variables representing probabili-
ties. This entails that all derived distribution functions are only defined
on (0, 1) and make no sense outside this interval. Most of the derived
distributions approach infinity for x→ 0+ and x→ 1−, therefore, we only
consider the open interval (0, 1). This implies that, e.g. an error-probability
cannot be a hard 0 (absolutely never wrong) or a hard 1 (absolutely always
wrong), though it can be arbitrarily close to 0 or 1.

B.1 Fixed Temperature Model

The One-Probability Distribution is derived by considering the defi-
nition of its cumulative distribution function:

cdfP (x) def= Pr (P ≤ x) = Φ
(
λ1Φ

−1 (x) + λ2
)
,

pdfP (x) def= d cdfP (x)
dx = λ1ϕ(λ1Φ−1(x)+λ2)

ϕ(Φ−1(x)) ,

by substituting the assumed normal distributions for M and Ni and using
the short-hand parameters λ1 = σN/σM , and λ2 = (t− µM)/σM .

The Error-Probability Distribution is derived by first considering
the conditional probability density function of the error-probability with
respect to the one-probability. Note that the error-probability of a cell i is

12In order to adhere to the page limit, the substeps in the following derivations are
very limited. For a more detailed version of these derivations we refer to the full version
of this work to appear on the Cryptology ePrint Archive (http://eprint.iacr.org/).

only completely determined at enrollment time, i.e. pe,i = pi if renroll
i = 0

and pe,i = 1− pi if renroll
i = 1. The conditional distribution is derived as:

pdfPe|P=pi (x) =

pi , for x = 1− pi ,
1− pi , for x = pi ,
0 , for all other x .

=

1− x , for pi = 1− x ,
1− x , for pi = x ,
0 , for all other pi .

The unconditional probability functions of Pe then follow as:

pdfPe (x) = λ1(1− x)ϕ(λ1Φ−1(x)+λ2)+ϕ(λ1Φ−1(x)−λ2)
ϕ(Φ−1(x)) ,

cdfPe (x) = λ1 ·
∫ Φ−1(x)

−∞
Φ (−u) · (ϕ (λ1u+ λ2) + ϕ (λ1u− λ2)) du .

B.2 Model with Temperature Sensitivity
Conditional One-Probability Distribution. The main goal of the
temperature extension of the basic model is to describe the evolution of
a PUF cell’s behavior over changing temperature, i.e. given a reference
behavior what will be its behavior when the temperature changes. We
first introduce a conditional variant of the one-probability to describe this,
and derive the relation of this conditional one-probability to the hidden
variables following from the temperature model relation given by (4).

pi(T |Tref)
def= Pr (Ri(T) = 1|pi(Tref)) = Φ

(
Φ−1 (pi(Tref)) + di ·∆T

σN

)
,

with ∆T = T − Tref and using the normal distribution assumption for
Ni. The distribution of the conditional one-probabilities follows from
considering the definition of their cumulative distribution function:

cdfP (T |Tref) (x) def= Pr (P (T |Tref) ≤ x) = Φ
(
θ · ∆Φ−1(x)

|∆T |
)
,

pdfP (T |Tref) (x) =
d cdfP (T |Tref)(x)

dx = θ
|∆T | ·

ϕ

(
θ·∆Φ

−1(x)
|∆T |

)

ϕ(Φ−1(x)) .

with ∆Φ−1 (x) = Φ−1 (x) − Φ−1 (pi(Tref)) and after filling in the normal
distribution assumption for D and using the short-hand notation θ = σN

σD
.

Error-Probability Distribution. We first express the conditional dis-
tribution of the error-probability conditioned on a known value for the
one-probability at Tref: pi(Tref), and a known value for the conditional
one-probability pi(T |Tref):

Pr (Pe(T ;Tref) = x|P (T |Tref) = y, P (Tref) = pi,ref) =

pi,ref , for x = 1− y ,
1− pi,ref , for x = y ,
0 , for all other x .

We begin with removing the conditioning on pi(T |Tref):

Pr (Pe(T ;Tref) = x|P (Tref) = pi,ref) = (1− pi,ref) · pdfP (T |Tref) (x) + pi,ref · pdfP (T |Tref) (1− x) .

The unconditional distribution of Pe(T ;Tref) then follows as:

pdfPe(T ;Tref) (x) =
∫ 1

0

(
(1− pi,ref) · pdfP (T |Tref) (x) + pi,ref · pdfP (T |Tref) (1− x)

)
pdfP (pi,ref) dpi,ref ,

= λ1θ
|∆T |ϕ(Φ−1(x)) ·

∫+∞
−∞

[
Φ (−u)ϕ

(
θΦ
−1(x)−u
|∆T |

)
+ Φ (u)ϕ

(
θΦ
−1(x)+u
|∆T |

)]
· ϕ (λ1u+ λ2) du .

cdfPe(T ;Tref) (x) = λ1θ
|∆T | ·

Φ−1(x)∫
−∞

+∞∫
−∞

[
Φ (−u)ϕ

(
θ v−u|∆T |

)
+ Φ (u)ϕ

(
θ v+u
|∆T |

)]
· ϕ (λ1u+ λ2) du dv .

For ∆T → 0+ this reverts to the distribution functions for the basic fixed
temperature model as derived in App. B.1.

56 PUFFIN — Physically unclonable functions found in standard PC components

Appendix B

Paper: “Bias-based modeling and
entropy analysis of PUFs”

Authors: Robbert van den Berg (Eindhoven University of Technology), Boris Škorić (Eind-
hoven University of Technology), and Vincent van der Leest (Intrinsic-ID)
Venue: International Workshop on Trustworthy Embedded Devices (TrustED) 2013
Date: November 4th, 2013

Status: Accepted for publication

57

58 PUFFIN — Physically unclonable functions found in standard PC components

Bias-based modeling and entropy analysis of PUFs

Robbert van den Berg
Eindhoven University of

Technology
Eindhoven, The Netherlands

Boris Škorić
Eindhoven University of

Technology
Eindhoven, The Netherlands

Vincent van der Leest
Intrinsic-ID

Eindhoven, The Netherlands

ABSTRACT
Physical Unclonable Functions (PUFs) are increasingly be-
coming a well-known security primitive for secure key storage
and anti-counterfeiting. For both applications it is imperative
that PUFs provide enough entropy. The aim of this paper
is to propose a new model for binary-output PUFs such as
SRAM, DFF, Latch and Buskeeper PUFs, and a method to
accurately estimate their entropy. In our model the measur-
able property of a PUF is its set of cell biases. We determine
an upper bound on the ‘extractable entropy’, i.e. the number
of key bits that can be robustly extracted, by calculating the
mutual information between the bias measurements done at
enrollment and reconstruction.
In previously known methods only uniqueness was studied

using information-theoretic measures, while robustness was
typically expressed in terms of error probabilities or distances.
It is not always straightforward to use a combination of these
two metrics in order to make an informed decision about
the performance of different PUF types. Our new approach
has the advantage that it simultaneously captures both of
properties that are vital for key storage: uniqueness and
robustness. Therefore it will be possible to fairly compare
performance of PUF implementations using our new method.
Statistical validation of the new methodology shows that

it clearly captures both of these properties of PUFs. In other
words: if one of these aspects (either uniqueness or robust-
ness) is less than optimal, the extractable entropy decreases.
Analysis on a large database of PUF measurement data shows
very high entropy for SRAM PUFs, but rather poor results
for all other memory-based PUFs in this database.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and reliability—Performance
Analysis and Design Aids

Keywords
PUF, SRAM, entropy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TrustED’13, November 4, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2486-1/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517300.2517301.

1. INTRODUCTION
Due to deep-submicron manufacturing process variations

every transistor in an integrated circuit (IC) has slightly dif-
ferent physical properties that lead to measurable differences.
Examples of such physical properties are threshold voltages
and gain factors of the IC’s transistors. The submicron varia-
tions are uncontrollable during manufacturing, which ensures
that these physical properties cannot be copied or cloned.
Therefore these properties can be used to derive a unique
fingerprint of an electronic circuit, similar to human biomet-
rics. It is very hard, expensive and economically not viable
to create a device with a specifically chosen fingerprint.
The functions used to derive unique fingerprints for ICs

are known as Physical Unclonable Functions (PUFs). Imple-
menting a PUF requires an electronic circuit that measures
the responses of the hardware to certain given inputs or chal-
lenges, which depend on the unique physical properties of the
device. In order for a PUF implementation to be practically
useful the PUF should be easy to challenge and the response
easy to measure, but very hard to reproduce by construction1.
Common applications for PUFs are to use them as identifica-
tion or authentication primitives [6, 11], storing secret keys
“without actually storing them” [5, 10] (for IP protection or
as a “root of trust” in secure environments), and random
number generation [6, 26].

1.1 Physical Unclonable Functions
Pappu [16] introduced the concept of PUFs in 2001 un-

der the name Physical One-Way Functions. The proposed
technology was based on obtaining a response (scattering
pattern) when shining a laser on a bubble-filled transparent
epoxy wafer. In 2002 the first physical random function for
silicon devices was introduced by Gassend et al. [4]. This
function makes use of the manufacturing process variations
in ICs, with identical masks, to uniquely characterize each
IC. For this purpose the frequencies of ring oscillators were
measured. Using this method (now known as a Ring Os-
cillator PUF), they were able to characterize ICs. In 2004
Lee et al. [11] proposed another PUF that is based on delay
measurements, the Arbiter PUF. In 2010 Suzuki et al. [21]
introduced the Glitch PUF, which exploits glitch waveforms
from delay variation between gates.
Besides intrinsic PUFs based on delay measurements, a

second type of PUF in ICs is known: the memory-based
1Note that the way a PUF is implemented is vital to the
security of this PUF. E.g. in case of a memory-based PUF
there should be no interface on which the start-up pattern
can be read by an attacker (PUF response is kept secret).

PUF. These PUFs are based on the measurement of start-
up values of memory cells. This memory-based PUF type
includes SRAM PUFs, which were introduced by Guajardo
et al. in 2007 [5]. Furthermore, so-called Butterfly PUFs were
described in 2008 by Kumar et al. [10]. In the same year
Maes et al. [14] introduced D Flip-Flop PUFs and Su et
al. [19] published about Latch PUFs. Recently, Buskeeper
PUFs were demonstrated by Simons et al. [18] in 2012.

1.2 PUF properties
In order for the IC to be uniquely identifiable, the PUF

must be reliable and unique. In this case reliable means that
one is able to reproduce the same behaviour of the function
when challenged with the same input over and over again.
The characteristics of electronic components depend on the
environment they are exposed to (ambient temperature, volt-
age ramp-up curves, etc.), but also on the ageing process
of CMOS. It is of crucial importance that the function has
a stable behaviour across a range of environmental condi-
tions during the lifetime of the IC. Typically it is observed
that PUFs exhibit a noisy behaviour. Therefore the PUF
implementation must include an error correction process to
stabilize the PUF responses both over environmental condi-
tions and over time.
The second important parameter for PUFs is entropy. At

the time of PUF manufacture, there is an uncontrollable pro-
cess that leads to the creation of stably measurable challenge-
response properties. The uncontrollability of the manufac-
turing process ensures the physical unclonability of the PUF,
provided that there is enough entropy. We require that the
entropy of the uncontrollable stable PUF properties2 is suf-
ficiently high. When this requirement is met, the following
properties hold:

• Uniqueness. The probability that two PUFs have closely
resembling properties is exponentially small.

• Unpredictability. The probability of correctly predicting
an unknown PUF’s set of responses is exponentially
small. Furthermore, knowledge of one PUF’s responses
does not help in the prediction of another PUF’s re-
sponses and knowledge of part of PUF response does
not help predicting the other bits from this particular
response.

1.3 Contribution
The focus of this paper is on demonstrating a novel method

for quantifying the usable (‘extractable’) entropy of PUF
responses. Mutual information provides a fundamental upper
bound on the amount of key material that can be reliably
extracted from a PUF using a helper data scheme (a.k.a.
Fuzzy Extractor) [3, 8, 15, 22].
We calculate the mutual information between the enroll-

ment measurements and later reconstruction measurements.
Here the bias of a memory cell / flip-flop / latch serves as
the measurable PUF property; multiple enrollment measure-
ments (k) and multiple reconstruction measurements (`) are
performed on each cell in order to estimate the bias. The
mutual information between the k enrollment measurements
and the ` reconstruction measurements is an upper bound
on the usable entropy.
2 Entropy of controllable part is irrelevant, since this part
can be cloned. Entropy of unstable part is also irrelevant here
since we cannot exploit it for reproducible key extraction.

In order to validate our approach and to quantify the results
of our approach in a real-life setting we used a large data
set from the European project UNIQUE. This statistical
validation of the new methodology shows that it clearly
captures both the uniqueness and robustness of PUFs. In
other words: if one of these aspects is less than optimal, the
extractable entropy calculated with this method will decrease.
The analysis using the UNIQUE PUF measurement data
shows very high entropy for SRAM PUFs, but rather poor
results for all other memory-based PUFs of this database.

2. RELATED WORK
This paper has been derived from the work in the M.Sc.

thesis of Robbert van den Berg [24] in 2012. In his work a
new method is proposed for calculating (extractable) entropy
for memory-based PUFs. In this section we briefly list known
methods.
Extensive entropy analyses of optical PUFs by Tuyls et

al. [23] and of coating PUFs by S̆korić et al. [27] exist, but
these analyses are not applicable to memory-based PUFs.
A simple first indication of uniqueness involves the calcula-

tion of Hamming Weights of PUFs. The Hamming weight of
a PUF, the number of cells that return non-zero upon start-
up, can be used to determine if a PUF is biased [9, 17, 25].
When sampling multiple PUFs, the minimum or maximum
Hamming weight can be used to estimate an upper bound
on the bias.
The inter-device (or between-class) Hamming distance is a

measure of the uniqueness of PUFs; it indicates how easy it is
to distinguish or identify different devices [20]. For uniqueness,
it is desirable to have a fractional3 inter-device distance close
to 0.5 which means that on average half the cells prefer a
different start-up state [2, 9, 10, 17, 25]. It indicates a low
correlation between responses of different devices.
A method to derive a conservative lower bound on the

entropy is calculating min-entropy based on the enrollment
measurements of a set of PUFs. This is a very conservative
entropy estimation, but a good one for measuring uncertainty
about a cryptographic key [1, 2, 9, 18, 26]. However, it does
not take into account how much entropy is lost due to noise.
An optimal compression algorithm can compress a PUF

response to a description with length at least equal to the
entropy of the PUF data. By reversing this principle, an
optimal compression algorithm can be used to provide an
estimate for the PUF entropy. In PUF entropy analysis, the
Context-Tree Weighting algorithm (CTW) [28] is regularly
used to estimate an upper bound on the entropy of PUFs [1,
2, 7, 17].
Furthermore, in [12] a model was developed for Silicon

PUFs, but no entropies were computed. We work with a
somewhat similar model and use it to estimate entropies.

3. MODELING BINARY-OUTPUT PUFS
Random variables are written with capitals, and their real-

izations in lower case. Vectors are in boldface. The number
of components (memory bits / flip-flops / latches / ...) in the
PUF is denoted as n. The components will be referred to as
cells. We define the set [n] = {1, . . . , n}. At enrollment, the
PUF is fully characterized by a vector of biases: b = (bi)n

i=1.
When an enrollment measurement is done on cell i, the result
3A fractional Hamming distance is the Hamming distance
between two strings divided by the length of the strings.

is ‘1’ with probability bi. For every cell, k enrollment mea-
surements are done (with k ≥ 1). The number of ‘1’ results
in cell i is denoted as xi. We define x = (xi)n

i=1. The random
variable Xi is binomial-distributed with parameters k and
bi: Pr[Xi = x] = px|bi

:=
(

k
x

)
bx

i (1 − bi)k−x. We denote the
joint probability as px|b =

∏
i∈[n] pxi|bi

.
In the reconstruction phase the environmental circum-

stances are in general different than during enrollment, which
leads to modified cell biases b′i. A number ` of measurements
is done on each cell; the number of ‘1’ results in cell i is
denoted as yi. The variable Yi is binomial-distributed with
parameters ` and b′i. We define qy|b′

i
=
(

`
y

)
(b′i)y(1 − b′i)`−y

and qy|b′ =
∏

i∈[n] qyi|b′
i
. Note that x/k is an estimate of b,

and y/` is an estimate of b′. The estimates become more
accurate by increasing k and `, respectively.
Biases b and b′ are themselves the result of probabilistic

processes: (i) Random variable B has a distribution ρ dic-
tated by the randomness in PUF manufacturing. (ii) After
enrollment there are random influences that alter B to B′.
This is modeled as a set of transition probabilities τ(b′|b).
The amount of common key material that can be reli-

ably extracted from the enrollment and reconstruction mea-
surements is upper bounded by the mutual information
I(X; Y) = H(X) + H(Y) − H(X,Y). Note that I(X; Y)
depends on k and `. We have

Pr[X =x] =
∫ 1

0
dnb ρ(b) px|b (1)

Pr[Y =y] =
∫ 1

0
dnb′[

∫ 1

0
dnb ρ(b)τ(b′|b)] qy|b′ (2)

Pr[X =x,Y =y] =
∫ 1

0
dnb ρ(b)px|b

∫ 1

0
dnb′ τ(b′|b)qy|b′ .(3)

(In our notation the an integral is an operator acting on
everything to the right.) Our aim is to estimate ρ and τ from
our set of measurements on the UNIQUE PUFs, and then use
Eqs. (1–3) to compute I(X; Y). However, the space in which
the biases live is very large due to the large number of cells
(b, b′ ∈ B = [0, 1]n), no matter how we discretize the interval
[0, 1]. This makes estimation of probability distributions
difficult, since any histogram we construct is based on only
N points in the whole space B, where N is the number of
PUFs we have at our disposal; the density of points is so low
that typically each bin will contain at most one point.
We introduce the following, rather crude, approximation,

ρ(b) ≈
∏

i∈[n]

ρi(bi) ; τ(b′|b) ≈
∏

i∈[n]

τ0(b′i|bi). (4)

In words: (i) At manufacture, each cell has its own probability
distribution (ρi) for the bias, independent of the other cells.
(ii) We use global transition probabilities τ0(· |·), indepen-
dent of the cell index, to model the effect of environmental
influences on the biases.
The functions ρi and τ0 are defined on small domains: [0, 1]

and [0, 1]2 respectively. Hence they can be estimated fairly
accurately. Note that our approximation for ρ is not capable
of modeling correlations between cells. Our approach (4) is
motivated by (a) the lack of correlation we observe between
cells in most of the PUF types (see Section 4.3), and (b) a
feeling that the physics of the transitions bi 7→ b′i should not
depend on the cell index i.

Substitution of (4) into (1–3) gives factorized equations,

Pr[X =x] ≈
∏

i∈[n]

∫ 1

0
dbi ρi(bi)pxi|bi

(5)

Pr[Y =y] ≈
∏

i∈[n]

∫ 1

0
db′i[
∫ 1

0
dbi ρi(bi)τ0(b′i|bi)]qyi|b′

i
(6)

Pr[X =x,Y =y] ≈
∏

i∈[n]

∫ 1

0
dbiρi(bi)pxi|bi

∫ 1

0
db′iτ0(b′i|bi)qyi|b′

i
.(7)

The mutual information then consists of independent parts,
I(X; Y) ≈

∑
i∈[n] I(Xi;Yi) =

∑
i∈[n] H(Xi)+H(Yi)−H(Xi, Yi).

4. RESULTS

4.1 Data set
To test the results of our proposed method, a large data

set of PUF measurements has been used. This data set was
created in the EU funded FP7 programme project UNIQUE
(contract number 238811). The UNIQUE project yielded 192
ASICs featuring six different PUF types: SRAM, D Flip-Flop
(DFF), Latch, Buskeeper, Arbiter and Ring Oscillator.

We analyze the four memory-based PUF types. Each ASIC
has four instantiations of the Latch, DFF and SRAM PUF
and two instantiation of the Buskeeper PUF. Unfortunately
two Latch PUFs per ASIC are unusable due to faults in the
addressing logic. Furthermore, during preliminary testing,
one DFF instance was found to be very unreliable when
compared to the other instances (also noted in [9, 13]). This
instance we also excluded from the test data. This leaves a
total of 2 · 192 = 384 Latch and Buskeeper PUFs, 3 · 192
= 576 DFF and 4 · 192 = 768 SRAM PUFs for analysis.
All these PUF types provide 8192 bits of output, except

the SRAM PUF which has 65536 bits of output. However,
during the entropy analysis we used only 8192 out of these
65536, in order to reduce the required memory for processing.
In the UNIQUE project, several different test (such as

temperature and voltage variation) were done to determine
reliability (e.g. in [9] and [12]). In this paper, we use the data
from the temperature variation test for the uniqueness anal-
ysis, since it provides PUF responses obtained both at room
temperature and at the standard operational temperature
limits of electronics. The room temperature measurements
are ideal candidates for enrollment, while the measurements
at other temperatures provide reconstruction conditions. The
data set contains a total of 60 measurements per PUF instan-
tiation at +25◦C (used as enrollment measurements) and
40 measurements at -40◦C and +85◦C respectively (used as
reconstruction measurements). The two temperatures used
for reconstruction have been chosen because the industrial
standard for temperature testing of ICs ranges from -40◦C
to +85◦C. Therefore, these two temperatures are the corner
cases for using PUFs in industrial grade devices.
The analysis of the data has been performed on a 32-bit

3GHz dual core PC with 2GB RAM, using Matlab. To pro-
cess the PUF data with Matlab, data matrices were created
with cells as columns and measurements as rows. This was
repeated for each PUF, creating a #Measurements × #Cells
× #PUFs three-dimensional matrix per PUF instance. The
memory size required for these matrices can become rather
large as the number of elements of these matrices increases.
For example, if all cells of the SRAM PUF would be used, a

60 × 65536 × 192 = 754,974,720 element matrix would be
required to store enrollment data. However, as some Matlab
functionality only works with (64-bit) doubles, these matrices
cannot be stored and processed efficiently.

4.2 Applying the proposed model
In order to apply the model as proposed in Section 3 we

need to investigate whether individual PUF cells are corre-
lated with each other. Since the proposed method requires
PUF cells to be independent, it should be made sure that this
is indeed the case for the PUFs from the UNIQUE database.
This verification is described in Section 4.3.
In order to make contact with the approaches in the lit-

erature, we first separately investigate PUF uniqueness and
reliability, before presenting the mutual information results. A
measure of device uniqueness is calculated in Section 4.4. For
this purpose we use the inter-device distance. As stated be-
fore, the extractable entropy derived by the proposed model is
based, besides uniqueness, also on the reliability of the PUFs.
The robustness of the biases is calculated in Section 4.5.

We compute the mutual information in Section 4.6. This
mutual information contains aspects of both the uniqueness
and the reliability. The mutual information computed ac-
cording to our model provides an estimated upper bound
on the extractable entropy per cell. Finally we calculate the
amount of extractable entropy per mm2 for each PUF type.
Note that all results in this paper are taken from the M.Sc.

thesis of Robbert van den Berg [24]. For more details on the
results and for comparisons of our method with results from
methods in literature, we refer the reader to this thesis.

4.3 Correlations
Pearson’s product-moment coefficient is calculated for ev-

ery PUF to determine if there is any correlation among cells.
Although 0 correlation does not directly imply independence,
any correlation found during testing would indicate that
there exists linear dependencies between cells. In literature,
PUF cells are generally assumed independent (e.g. [2, 18]).
For this test, the first 1024 cells of each PUF are used.

Pairwise, the covariance of two cells is divided by the product
of their standard deviations as shown in Eq. (8). The result
is a value between −1 and 1, where 1 denotes a very strong
positive relation and −1 denotes a very strong negative
relation, which means that when the bias of cell i increases,
the bias of cell j decreases. The closer this value lies to zero
the weaker the relationship between the two cells.

Corr(xi, xj) = Cov(xi, xj)
σxiσxj

(8)

Furthermore, we calculated the probabilities of getting a
correlation as large as observed under the hypothesis that
there is no correlation. When this probability is less than
0.01, a correlation is considered significant.
For all PUF instances, the percentage of cells failing the

hypotheses of no correlation lies around 0.010 with a maxi-
mum of 0.014 for the Latch PUF. This amount of significant
correlations is exactly what can be expected by chance. Fur-
thermore, from the significant correlations, the strength of the
correlation is approximately 0.2. When the same correlation
test is applied to synthetically generated PUF data (known
to be independent), similar values are observed. These results
indicate that linear dependence among cells is very low or
non-existent. We cannot exclude nonlinear dependences.

Figure 1: Inter-device distances ∆p,p′ . Device numbers 1–
192 refer to the set of devices at −40◦C, 193–384 denote the
same devices at +25◦C, and 385–576 at +85◦C. From top
to bottom: SRAM, DFF, Latch and Buskeeper.

4.4 Inter-device distance
Let x(p)

i be the x-count in cell i of PUF p. We define the
inter-device distance ∆p,p′ between PUFs p and p′ as the
cell-average of the absolute bias difference,

∆p,p′ := 1
n

n∑

i=1

∣∣∣∣∣
x

(p)
i

k
− x

(p′)
i

k

∣∣∣∣∣ . (9)

Fig. 1 shows inter-device distances. Here the device numbers
1–192 refer to the set of devices at −40◦C, while 193–384
denote the same set of devices at +25◦C, and 385–576 at
+85◦C. For the SRAM PUFs the temperature seems to have
no effect on the inter-device distances, which are all close
to 50%. This indicates a close to optimal inter-device dis-
tance (around 50% is optimal), which is also very stable over
different environmental conditions.
For DFF PUFs the distances become smaller with decreas-

ing temperature. This happens because the average Hamming
Weight of the DFF PUFs rises with decreasing temperature.
At −40◦C this value gets close to 100%, which leaves little
room for differences between devices.
In Latch PUFs the opposite happens: distances become

smaller with increasing temperature. In this case Hamming
Weight rises with temperature (close to 100% at +85◦C).

The Buskeeper behaves differently. There is a marked
difference between +85◦C and the other temperatures. This
is because the Buskeeper memories are slightly biased towards
0 at −40◦ and +25◦, while there is a significant bias towards
1 at +85◦. The result is a lower inter-device distance when
comparing devices at an equal temperature and comparing
−40◦ to +25◦. Comparing devices at +85◦ to any other
temperature results in a higher inter-device distance, since
the Hamming Weight is very different in these cases.

4.5 Robustness of the biases
We denote the vector x associated with the a’th PUF as

x(a), and similarly y(a). The robustness of a cell’s bias can
be characterized using the following distance measure,

Di := 1
N

N∑

a=1

∣∣∣∣
x

(a)
i

k
− y

(a)
i

`

∣∣∣∣ . (10)

Here i ∈ [n] is the cell index. Values for large k and ` are
listed in Table I.

Table I. Bias robustness of UNIQUE PUFs. Listed values
are average and maximum Di values, with k and ` very large.

Av. distance Max. distance
Instance -40◦C +85◦C -40◦C +85◦C
SRAM 1 0.054 0.050 0.059 0.056
SRAM 2 0.053 0.050 0.060 0.057
SRAM 3 0.053 0.050 0.059 0.057
SRAM 4 0.053 0.050 0.061 0.058
DFF 1 0.125 0.176 0.158 0.194
DFF 2 0.153 0.174 0.318 0.217
DFF 3 0.122 0.178 0.157 0.196
DFF 4 0.120 0.177 0.166 0.197
Latch 1 0.231 0.103 0.274 0.171
Latch 2 0.233 0.117 0.277 0.182
Buskeeper 1 0.09 0.172 0.099 0.196
Buskeeper 2 0.092 0.171 0.101 0.20

Figure 2: Bias changes in the DFF PUFs at +85◦C. Top:
Histogram of (xi, yi) pairs, for k = 60, ` = 40, on a loga-
rithmic scale. The vertical axis counts the number of cells in
which a combination (x, y) occurs. Bottom: The transition
probabilities τ0(y

`
|x

k
) derived from the histogram, plotted as a

function of x and y.

In Fig. 2 we show observed bias transition counts and the
transition model derived from them (transition probabilities
τ0). The figure shows the result for DFF PUFs; the other
PUF types behave similarly. We see that biases far away
from 0 and 1 practically never occur (not even when the
enrollment bias lies around 0.5). Note that the top figure is
logarithmically scaled in order to make the low parts of the
histogram visible. Hence, the typical bias changes that occur
are jumps to 0 or 1.
Furthermore, as expected, in the bottom figure we see that

the probability mass of y given x is concentrated at small
y when x is small, and at large y when x is large. In DFF
PUFs at +85◦C, bias jumps to 0 are more likely than jumps
to 1.

4.6 Mutual information
For each of the four PUF types we have estimated the

mutual information I(X; Y) using the independent-cell ap-
proximation (4), with empirical ρi and τ0. The results are
shown in Fig. 3, as an average per cell, as a function of k
and `. Unsurprisingly, (i) the mutual information grows with
increasing k and `; and (ii) saturation occurs at large k,`.
The rate of growth is not the same for all PUF types.

SRAM PUFs benefit most from increasing k and `. Note
that SRAM PUFs can achieve a mutual information of more
than one bit per cell. This is entirely natural, since this
mutual information is calculated based on the values of the
cell biases (and not on the binary start-up values of these
cells). These cell biases are continuum variables which in
theory can have infinite entropy. Note also that even at k = 1
(a single enrollment measurement) it is advantageous to take
` > 1.
Finally, based on the mutual entropy results and known size

of the PUF instances on the UNIQUE ASIC (based on [13])
the minimum number of extractable bits per mm2 of each
PUF type can be calculated. The results of the calculation
can be found in Table III.
From these results it becomes very clear that the SRAM

PUF by far has the highest extractable entropy out of all
these PUF types. This is no surprise, since SRAM PUFs were
found to be the most reliable and unique PUFs in [9, 13].
Furthermore, the number of PUF cells per mm2 is also highest
for the SRAM PUF. Hence there are multiple reasons why
none of the other PUFs even comes close to the performance
of the SRAM PUF.
Out of the other (memory-based) PUF types, the Buskeeper

PUF can be ranked in second place (fairly good uniqueness,
but much less robust over temperature variations). Both
the DFF and Latch PUFs (ranked third and fourth respec-
tively) perform much worse, because for these PUFs both
the uniqueness and robustness are poor. All of these results
are comparable to the conclusions drawn in [9, 13] about the
UNIQUE data set.

Figure 3: Mutual information between Xi and Yi as a func-
tion of k and `, for the four PUF types, at reconstruction
temperatures −40◦C and +85◦C. From top to bottom:
SRAM, DFF, Latch and Buskeeper.

Table II. Mutual information for different k and `. In-
stance and condition giving the lowest mutual information
per PUF type is marked with *.

Cond. Instance Mutual Information (per cell)
k=1, k=60, k=60,
`=1 `=1 `=40

SRAM 1* 0.61 0.77 1.08
SRAM 2 0.61 0.77 1.08
SRAM 3 0.61 0.77 1.08
SRAM 4 0.62 0.77 1.08
DFF 1 0.33 0.39 0.46

−40◦C DFF 3 0.33 0.39 0.45
DFF 4* 0.33 0.38 0.44
Latch 1* 0.18 0.21 0.24
Latch 2 0.20 0.23 0.26
Busk. 1 0.53 0.63 0.77
Busk. 2 0.52 0.62 0.75
SRAM 1 0.62 0.77 1.12
SRAM 2 0.62 0.77 1.12
SRAM 3 0.62 0.77 1.12
SRAM 4 0.62 0.77 1.12
DFF 1 0.33 0.40 0.46

+85◦C DFF 3 0.32 0.39 0.46
DFF 4 0.33 0.40 0.46
Latch 1 0.29 0.33 0.40
Latch 2 0.28 0.32 0.39
Busk. 1 0.43 0.53 0.66
Busk. 2* 0.42 0.52 0.65

Table III. Extractable bits per mm2 on the UNIQUE chip,
broken down to PUF type and depending on k and `. The
lowest numbers were taken from Table II.

PUF Area Cells/ Minimum #bits/mm2

type (mm2) mm2 k=1, k=60, k=60,
`=1 `=1 `=40

SRAM 0.213 ≈ 1.2M 0.75M 0.95M 1.3M
DFF 0.392 ≈ 84k 28k 32k 37k
Latch 0.272 ≈ 0.12M 22k 25k 29k
Busk. 0.076 ≈ 0.22M 91k 0.11M 0.14M

5. CONCLUSIONS AND FUTURE WORK
We have developed a model for memory-based PUFs that

treats the cell biases as the identifying property of the PUF.
The enrollment procedure, consisting of k measurements,
gives an estimate X/k of the cell biases b under enrollment
conditions; similarly the ` reconstruction measurements give
an estimate Y /` of the biases b′ at reconstruction conditions.
The mutual information I(X; Y) is an upper bound on the
amount of key material that can be reliably extracted from
the PUF. The mutual information depends on the probability
distribution ρ(b), which models the uncontrollable manufac-
turing process, and on the transition probabilities τ(b′|b)
which model the various sources of noise.
This approach has the advantage that it simultaneously

captures two issues of vital importance for key storage: unique-
ness and robustness. (Usually only uniqueness is studied
using information-theoretic measures; robustness is typically
expressed in terms of error probabilities or distances.)

We have applied our model to the UNIQUE date set,
assuming that all cells are independent. Furthermore, we
have adopted a specific noise model in which the transition
probabilities τ0(b′|b) do not depend on the cell index. Our
analysis shows a very high entropy for the SRAM PUFs
in the UNIQUE database (especially when the number of
enrollment and reconstruction measurements increases, the
entropy per cell becomes more than 1). However, all other
PUFs contain significantly less entropy. The Latch PUFs
perform poorly, with values between 0.18 and 0.40 bits of
entropy per cell.

Based on the results from this paper, we foresee as future
work:

• Mutual information estimates including correlations
between cells. This requires dealing with an n × n
correlation matrix, which is cumbersome for large n.

• We have not addressed the question of Fuzzy Extractor
design. The mutual information I(X; Y) is an upper
bound on the amount of extractable key material, but
knowing this number does not tell you how to achieve
this bound. Efficient Fuzzy Extractors have to be found.

Acknowledgements
This work has been supported by the European Commission
through the ICT program under contract INFSO-ICT-284833
(PUFFIN).

References
[1] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi,

Franccois-Xavier Standaert, and Christian Wachsmann.
2011. A Formal Foundation for the Security Features
of Physical Functions. IEEE Security and Privacy 2011
2011, 1 (2011), 16.

[2] Mathias Claes, Vincent van der Leest, and An Braeken.
2012. Comparison of SRAM and FF PUF in 65nm tech-
nology. In Proceedings of the 16th Nordic conference on
Information Security Technology for Applications (Nord-
Sec’11). Springer-Verlag, Berlin, Heidelberg, 47–64. DOI:
http://dx.doi.org/10.1007/978-3-642-29615-4_5

[3] Y. Dodis, M. Reyzin, and A. Smith. 2004. Fuzzy Ex-
tractors: How to generate strong keys from biometrics
and other noisy data. In Eurocrypt 2004 (LNCS), Vol.
3027. 523–540.

[4] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and
Srinivas Devadas. 2002. Silicon physical random func-
tions. In ACM Conference on Computer and Communi-
cations Security (CCS’02). ACM, New York, NY, USA,
148–160.

[5] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen,
and Pim Tuyls. 2007. FPGA Intrinsic PUFs and Their
Use for IP Protection. In Workshop on Cryptographic
Hardware and Embedded Systems (CHES ’07) (LNCS),
Pascal Paillier and Ingrid Verbauwhede (Eds.), Vol. 4727.
Springer-Verlag, Berlin, Heidelberg, 63–80. DOI:http:
//dx.doi.org/10.1007/978-3-540-74735-2_5

[6] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu.
2009. Power-Up SRAM State as an Identifying Fin-
gerprint and Source of True Random Numbers. IEEE
Trans. Computers 58, 9 (2009), 1198–1210.

[7] Tanya Ignatenko, Geert-Jan Schrijen, Boris Škorić, Pim
Tuyls, and Frans M. J. Willems. 2006. Estimating the
secrecy rate of Physical Uncloneable Functions with
the Context-Tree Weighting method. In Proc. IEEE
International Symposium on Information Theory 2006.
Seattle, USA, 499–503.

[8] A. Juels and M. Wattenberg. 1999. A fuzzy commit-
ment scheme. In ACM Conference on Computer and
Communications Security (CCS) 1999. 28–36.

[9] Stefan Katzenbeisser, Ünal KocabaÅ§, Vladimir Rožić,
Ahmad-Reza Sadeghi, Ingrid Verbauwhede, and Chris-
tian Wachsmann. 2012. PUFs: Myth, Fact or Busted?
A Security Evaluation of Physically Unclonable Func-
tions (PUFs) Cast in Silicon. In Cryptographic Hard-
ware and Embedded Systems (CHES) 2012, Emmanuel
Prouff and Patrick Schaumont (Eds.). Lecture Notes
in Computer Science, Vol. 7428. Springer Berlin Hei-
delberg, 283–301. DOI:http://dx.doi.org/10.1007/
978-3-642-33027-8_17

[10] S.S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P.
Tuyls. 2008. The butterfly PUF protecting IP on every
FPGA. In IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST’08), Mohammad
Tehranipoor and Jim Plusquellic (Eds.). IEEE Computer
Society, 67–70. DOI:http://dx.doi.org/10.1109/HST.
2008.4559053

[11] J.W. Lee, Daihyun Lim, B. Gassend, G.E. Suh, M. van
Dijk, and S. Devadas. 2004. A technique to build a
secret key in integrated circuits for identification and
authentication applications. In IEEE Symposium on
VLSI Circuits 2004. IEEE, 176–179. DOI:http://dx.
doi.org/10.1109/VLSIC.2004.1346548

[12] R. Maes. 2013. An Accurate Probabilistic Reliability
Model for Silicon PUFs. In Workshop on Cryptographic
Hardware and Embedded Systems (CHES) 2013.

[13] R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E.
van der Sluis, and V. van der Leest. 2012. Experi-
mental evaluation of Physically Unclonable Functions
in 65 nm CMOS. In ESSCIRC (ESSCIRC), 2012 Pro-
ceedings of the. 486 –489. DOI:http://dx.doi.org/10.
1109/ESSCIRC.2012.6341361

[14] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. 2008.
Intrinsic PUFs from Flip-flops on Reconfigurable De-
vices. In Workshop on Information and System Security
(WISSec 2008). Eindhoven, NL, 17.

[15] J.-P. Linnartz P. and Tuyls. 2003. New Shielding Func-
tions to Enhance Privacy and Prevent Misuse of Bio-
metric Templates. In Audio- and Video-Based Biometric
Person Authentication. Springer.

[16] Ravikanth Srinivasa Pappu. 2001. Physical one-way
functions. Ph.D. Dissertation. Massachusetts Institute
of Technology. AAI0803255.

[17] Geert-Jan Schrijen and Vincent van der Leest. 2012.
Comparative analysis of SRAM memories used as PUF
primitives. In Design, Automation Test in Europe Con-
ference Exhibition (DATE) 2012. 1319 –1324.

[18] Peter Simons, Erik van der Sluis, and Vincent van der
Leest. 2012. Buskeeper PUFs, a Promising Alternative
to D Flip-Flop PUFs. In IEEE International Workshop
on Hardware-Oriented Security and Trust (HOST’12),
in print. IEEE Computer Society.

[19] Ying Su, J. Holleman, and B.P. Otis. 2008. A Digital
1.6 pJ/bit Chip Identification Circuit Using Process
Variations. Solid-State Circuits, IEEE Journal of 43, 1
(2008), 69–77. DOI:http://dx.doi.org/10.1109/JSSC.
2007.910961

[20] G.E. Suh and S Devadas. 2007. Physical Unclonable
Functions for Device Authentication and Secret Key
Generation. In Design Automation Conference, 2007.
DAC ’07. 44th ACM/IEEE. 9–14.

[21] Daisuke Suzuki and Koichi Shimizu. 2010. The
Glitch PUF: A New Delay-PUF Architecture Exploit-
ing Glitch Shapes. In Cryptographic Hardware and
Embedded Systems, CHES 2010, Stefan Mangard and
Francois-Xavier Standaert (Eds.). Lecture Notes in
Computer Science, Vol. 6225. Springer Berlin Hei-
delberg, 366–382. DOI:http://dx.doi.org/10.1007/
978-3-642-15031-9_25

[22] P. Tuyls, B. Škorić, and T. Kevenaar. 2007. Security with
Noisy Data: Private Biometrics, Secure Key Storage and
Anti-Counterfeiting. Springer, London.

[23] P. Tuyls, B. Škorić, S. Stallinga, T. Akkermans, and
W. Ophey. 2004. An information theoretic model for
Physical Uncloneable Functions. In Information The-
ory, 2004. ISIT 2004. Proceedings. International Sym-
posium on. 141–. DOI:http://dx.doi.org/10.1109/
ISIT.2004.1365176

[24] R. van den Berg. 2012. Entropy analysis of Physical Un-
clonable Functions. MSc. thesis, Eindhoven University
of Technology. (2012).

[25] Vincent van der Leest, Geert-Jan Schrijen, Helena Hand-
schuh, and Pim Tuyls. 2010. Hardware intrinsic se-
curity from D flip-flops. In Proceedings of the fifth
ACM workshop on Scalable trusted computing (STC
’10). ACM, New York, NY, USA, 53–62. DOI:http:
//dx.doi.org/10.1145/1867635.1867644

[26] Vincent van der Leest, Erik van der Sluis, Geert-Jan
Schrijen, Pim Tuyls, and Helena Handschuh. 2012. Ef-
ficient Implementation of True Random Number Gen-
erator Based on SRAM PUFs. In Cryptography and
Security: From Theory to Applications, David Naccache
(Ed.). Lecture Notes in Computer Science, Vol. 6805.
Springer Berlin Heidelberg, 300–318.

[27] B. Škorić, S. Maubach, T. Kevenaar, and P. Tuyls. 2006.
Information-theoretic analysis of capacitive Physical
Unclonable Functions. Journal of Applied Physics 100,
2 (2006), 024902–024902–11. DOI:http://dx.doi.org/
10.1063/1.2209532

[28] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens.
1995. The context-tree weighting method: basic prop-
erties. Information Theory, IEEE Transactions on 41,
3 (1995), 653–664. DOI:http://dx.doi.org/10.1109/
18.382012

	Introduction
	Preliminary Analysis of PUFs
	Introduction
	Test Descriptions
	Repeated Start-up Test
	Temperature Cycle Test
	Between-Class Hamming Distance Test
	Hamming Weight Test

	Test Results
	Ainol Novo 7 Tablet
	Texas Instruments MSP430F5308
	Microchip PIC16F1825
	ST STM32F100R8
	ST STM32F100RB
	Atmel ATMega328p
	NVIDIA GeForce GTX 295
	Pandaboard

	Conclusions

	New methods for PUF analysis
	Paper: ``An Accurate Probabilistic Reliability Model for Silicon PUFs''
	Paper: ``Bias-based modeling and entropy analysis of PUFs''

