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Abstract

This document contains an overview results obtained within Work Package 3 (WP3) of the
PUFFIN project. The work in WP3 can be divided into three tasks: 1.) development of
hardware-entangled cryptographic building blocks, which are based on the underlying PUFs;
2.) exploration of the applicability of the PUF instances found in WP2 to be used as a TPM
replacement; 3.) investigation of approaches to bind software to a platform by intertwining
PUF responses with the binary running on the hardware. This document describes the
achievements in these areas during the first phase (18 months) of the PUFFIN project.
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Chapter 1

Introduction

Work Package 3 (WP3) is devoted to the development of use cases and applications for the
PUF instances acquired in Work Package 1 and 2 of the PUFFIN project. Specifically, to
employ intrinsic PUFs as a hardware-based anchor of trust, WP3 investigates the following
aspects:

• Task 3.1 – Hardware-based trust establishment.

• Task 3.2 – PUF-based software security.

• Task 3.3 – Security evaluation and implementation.

On the next pages the results of previous research and current work in progress are
summarized. Furthermore, future work as well as scheduled projects are presented. The
architecture of the PUFFIN project implies a bottom-up relationship between the different
work packages. Thus, the work of WP3 is based on the located and qualified PUF instances
from WP1 and WP2. The main contribution of WP3 during the first phase of the PUFFIN
project consists of the development of use cases and applications for intrinsic PUFs, whose
requirements towards the PUF-quality was fed back to WP1 and WP2. Furthermore, initial
implementations of the proposed use cases are provided, which will be advanced and extended
in the second half of the PUFFIN project.

Chapter 2 presents use cases which were gathered specifically for intrinsic PUF instances.
This collection is rather abstract and extensive and was used as a basis within the project for
the actual development of selected use cases.

Chapter 3 presents selected use cases which were further evaluated and implemented.
We present an improved Helper Data scheme based on a modified Code Offset Method,
which is part of Task 3.1. The idea is to achieve Zero Secrecy Leakage Security (ZSL) of
the Helper Data in Fuzzy Extractors given non-uniformly distributed PUF measurements.
The desired ZSL property is established by introducing bogus Helper Data instances to the
publicly stored enrollment data. Furthermore, we will demonstrate an implementation of
a secure boot approach using intrinsic SRAM PUFs on a system-on-a-chip (SoC) platform,
covering Task 3.2. The idea is to bind a given software instance to the hardware it is supposed
to be running on. In contrast to traditional schemes, which mostly involve Trusted Platform
Modules (TPMs) and thus require additional hardware modification and key and signature
management overhead, we propose to employ intrinsic SRAM PUFs as the hardware-based
anchor of trust. As a second contribution to Task 3.1, we demonstrate the concept of using the
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2 PUFFIN — Physically unclonable functions found in standard PC components

inherent noise of static random-access memory (SRAM) start up patterns as a source of true
random numbers. We examined the on-board SRAM of two wide-spread micro-controllers
and developed an architecture which can be used to provide a stream of random number
of variable length. Thus, we show the possibility to provide a light-weight source of high-
quality random numbers in commercial off-the-shelf (COTS) devices, which can be used as
input for subsequent cryptographic primitives and protocols. During the second period of the
PUFFIN project, current research results will be used as a basis to create more sophisticated
approaches to hardware-software binding as well as approaches to the protection of intrinsic
PUFs from passive listening and emulation attacks. Furthermore, a goal of the second period
is the development of novel cryptographic protocols based on intrinsic PUFs. Later, the
proposed protocols and implemented solutions will be tested towards their security. Thus,
the second period of the PUFFIN project will cover Task 3.3 by analyzing the security of the
research results of WP3.



Chapter 2

Use Cases

2.1 Introduction

One of the initial goals of WP3 is to explore possible use cases for intrinsic PUF instances
which were already discovered and which were anticipated to be available in the near future
of the PUFFIN project. The challenge is to consider the characteristics of intrinsic PUFs in
particular with respect to aspects of security. To summarize, the security characteristics of
intrinsic PUFs essentially comprise

1. a small challenge-response-pair, which might enable an attacker to perform Man-in-the-
Middle attacks or to model the PUF itself, and

2. the public availability of the PUF instance.

The second challenge comes into place since the project is on exploring PUF instances
in commodity hardware, which is supposed to be accessible also to a maliciously party. Fur-
thermore, as the goal of WP3 is to deliver a working proof-of-concept of one of the proposed
security architectures involving PUFs, the collection of use cases shall have a pragmatic char-
acter. The rest of this chapter includes a brief overview of the selected use cases, which we
will include in further research of the PUFFIN project.

Table 2.1 shows all the proposed use cases and gives an indication on whether we selected
them for further research. The research process for the selected use cases spans over the
entire project time. The last columns shows in which period of the PUFFIN project the
corresponding use cases are subject of research. Thus, WP3 research of period one of the
PUFFIN project focuses on a subset of the selected use cases. Research results of this subset
are presented in Section 3. Use cases for which no research or development results are given
will be processed in period two of the PUFFIN project.

2.2 Random Number Generation

The idea of this use case is diametrical to the traditional use of PUFs as a fingerprint for
silicon chips. For the extraction of hardware identifiers which can be regarded as a fingerprint
of the chip, only the stable bits are considered to generate a cryptographic key. However, in
case of random number generation the more interesting bits are the unstable ones which are
inherent to any PUF response and which are usually referred to as noise. Since this noise

3



4 PUFFIN — Physically unclonable functions found in standard PC components

Table 2.1: Proposed use cases for intrinsic PUFs.

Use Case Further Research Dedicated Period

Random Number Generation yes 1
Key Storage yes 1 & 2
Authentication yes 2
Hardware-Software-Binding / Secure Boot yes 1 & 2
Remote Service Activation no —
Key Distribution no —
Tamper Evidence no —

completely depends upon the physical hardware characteristics of the underlying platform,
they are a worthwhile source for true random numbers. These unstable bits are present
only directly after the device is booted, because they are likely to be overwritten soon by
the operation system or by application data. Therefore, they need to be made available for
further processing right after boot time: The initial true random numbers extracted from
the noise in the SRAM patterns are used as a seed for a pseudo-random number generator
(PRNG) to provide a bit stream of random numbers of variable length. However, since we
need to assume that an adversary has access to the device, provisions need to be made to
ensure that the initially extracted true random numbers are not disclosed publicly. Thus, the
seed must to be put into the PRNG as early as possible. Furthermore, the initial startup
values of the SRAM must be overwritten to disable any unintended posterior access.

2.3 Key Storage

Key storage is the most obvious but also the most demanded use case since it provides the basis
for many of the other use cases. In contrast to traditional approaches to store cryptographic
keys where the keys are present in non-volatile memory (NVM) all the time, using PUFs the
keys are generated on-the-fly. Since the keying material is present only during a short time
span while the device is operating, the attack surface for invasive attacks is decreased. Again,
since the device is assumed to be publicly available, precautions have to be implemented to
shield the key generation function from public usage.

2.4 Authentication

Based on the use case of generating keys from PUF responses, these keys can be further
used for performing authentication between different parties. Here, we can construct three
different variants of the use case:

1. device authentication,

2. client authentication, and

3. server authentication.

Regarding device authentication, a given hardware wants to authenticate itself against a
user. It is assumed that the device is light-weight in the sense of low computational power. In
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this case a smaller challenge-response-pair (CRP) space is not much of a security issue since
it can be assumed that there is no possibility of an adversary to position himself between
device and user.

The client authentication use case shares the same basic idea as the device authentica-
tion except that here the client wants to authenticate himself to a remote server. Again,
the client is assumed to be light-weight. In contrast the remote server is assumed to have
more computational power. In this scenario the small CRP space must be considered since
both parties are assumed to communicate over an insecure channel making it possible for an
adversary to eavesdrop the exchanged message. Thus, the attacker might be able to perform
a Man-in-the-Middle attack or capture enough messages to simulate the PUF instance.

The server authentication scenario shares most aspects from the client authentication use
case. Here, typically the server holds the PUF instance while the client checks the server’s
authenticity by querying its CRP database.

2.5 Hardware-Software-Binding / Secure Boot

The goal of this use case is to bind a given software instance to a platform, i.e., the software
will only behave properly if it is executed on the correct hardware. Since the hardware is
assumed to integrate a PUF instance, the binary needs to be intertwined with the PUF
responses.

A first approach uses the PUF to generate a key on-the-fly, which is subsequently used
to decrypt the bootloader which handles the loading of the kernel and thus of the operating
system. In this case the initial key-generation as well as the decrypting mechanism must be
made irreversible such that an adversary is not able to exchange it and thus bypass it. By
installing the critical parts of the code into masked ROM this requirement is guaranteed and
a defined, secure state at bootloader time can be achieved.

ContainerGeneric secure boot architecture

System-on-a-Chip (SoC)
Masked ROM

PUF Instance
   (SRAM)

2nd stage
bootloader

1.query PUF 3rd stage
bootloader2. decrypt & call

3. decrypt &
call

Kernel and OS,
e.g. Android

Figure 2.1: Scheme of the generic secure boot architecture.
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In the second phase of the project we focus on a more advanced approach which intertwines
the binary and the PUF responses more tightly. The idea is to challenge the PUF during the
execution of the binary such that the binary only continues to execute properly if it receives
the matching PUF responses; if it is executed on the wrong hardware, the software becomes
buggy. This approach is not straight-forward and requires several security mechanisms like
obfuscation and white-box cryptography. However, in this case the small size of the CRP
space becomes an issue that needs to be addressed, because an attacker is able to run the
software in an virtual environment to capture the challenge-response communication between
hard- and software and thus is able to model the PUF.



Chapter 3

Development of Use Cases

3.1 Introduction

In this chapter we present results of the selected use cases, which were subject to research for
WP3 during the first period of the PUFFIN project. The presented research projects stem
from the use case collection, which was presented in chapter 2. After selecting interesting
use cases from the collection for further research, a finer selection was made regarding, which
project to process in the first period of the PUFFIN project and which in the second one.
The selected research projects for the first period of the PUFFIN project, which are presented
in the following, cover the following tasks of WP3:

• Task 3.1: Hardware-based trust establishment.

• Task 3.2: PUF-based software security.

The work of Boris Skoric and Niels de Vreede is devoted to Task 3.1 as it introduces a
novel Helper Data Scheme, which realizes a new type of Zero Secrecy Leakage. Task 3.2 is
covered by two contributions. The first work of Anthony Herreweg et. al. implements a
secure PRNG using intrinsic PUFs, whilst the second contribution from André Schaller et.
al. uses intrinsic PUFs to securely bind a software instance, in particular a mobile device
bootloader, to a hardware platform.

In the second period of WP3, these results will be used as a basis to improve current work
and create more sophisticated solutions. These will address the most challenging part of Task
3.2 to create an approach, which protects intrinsic PUFs from emulation and replay attacks.
Furthermore, a more advanced approach for intertwining PUF challenges and responses with
a given software binary will be adressed. Another goal of WP3 during the second period is
to establish new cryptographic protocols based on the hardware properties of the underlying
intrinsic PUFs. The latter part of the second period of the PUFFIN project is devoted to
test and analyze the security of the proposed protocols and implementations. Thus, Task 3.3
– security evaluation and implementation – will be covered during this phase of the PUFFIN
project by WP3.

3.2 Helper Data Schemes

Using Physically Unclonable Functions, such as a secure key storage or for other crypto-
graphic targeted applications, the basic principle always is to reconstruct a secret S from

7



8 PUFFIN — Physically unclonable functions found in standard PC components

several noisy measurements X1, X2, ..., Xn. To achieve a reliable reconstruction given a set of
measurements with a known and bounded bit error rate (BER), so-called Fuzzy Extractors
(FEs) are employed. FEs are a specialized type of a security primitive, referred to as Helper
Data Scheme (HDS). In general HDS operate in two phases: (1) the enrollment phase and (2)
the reconstruction phase. In the enrollment phase a reference measurement X of a given PUF
instance is used as input (and optionally a random value R) for the FE, which subsequently
outputs a secret S as well as Helper Data W . In the reconstruction phase, the Helper Data
W is used to reconstruct S using a different but similar noisy measurement X ′.

The HDS and hence the FE are constructed such that the Helper Data generated during
the enrollment phase, does not leak too much information about the secret S, such that W
can be stored publicly. This security property is also referred to as Zero Secrecy Leakage
(ZSL). However, using the Code Offset Method (COM) as one method to construct a FE,
the security property of ZSL only holds if the measurements X1, X2, ..., Xn are uniformly
distributed.

The paper presented in Appendix B.1 deals with a modified Code Offset Method to
achieve Zero Secrecy Leakage property even if the involved measurements are not uniformly
distributed. The basic approach adds bogus Helper Data instances to the publicly stored
enrollment data, which are randomly permuted. From the attacker point of view it is hard
to distinguish between real and fake Helper Data Instances in this permuted set. In contrast,
the legit user possesses additional information about the permutation and can easily recover
relevant elements from the permuted set. If this set has enough fake elements an attacker can
only use brute force, which will not be longer feasibly as soon as the number of fake elements
reaches a certain value. In this way a new type of Zero Secrecy Leakage is achieved distinct
from the traditional approach to ZSL property.

The analysis of the proposed method reveals that for a small spam factor m, the workload
for the adversary increases by logm bits. For large m, the leakage I(X;W ) is practically
eliminated. Whilst the workload for the adversary is increased, the workload for the legit
party stays almost constant as a function of m.

3.3 Light-Weight Secure Boot

This paper presents a light-weight secure boot solution particularly suitable for mobile com-
mercial off-the-shelf hardware such as mobile phones and tablet PCs. Secure boot is enabled
by employing intrinsic Physically Uncloneable Functions, which are derived from the process
variations of static random-access memory in these devices. In contrast to the traditional se-
cure boot approach employing TPMs, our solution does not need additional hardware, making
it more flexible and cost efficient. We evaluated our approach through an implementation on
a System-on-a-Chip (SoC) platform. We selected a SoC architecture as most of the modern
smartphones and tables are designed as such and the increasing usage of SoCs in mobile de-
vices makes it likely that future devices will be designed using the same principle. We selected
the PandaBoard as basis for our implementation. The PandaBoard (ES) is an OMAP4430
(4460) based platform comprising of two ARM Cortex-A9 as well as two Cortex-M3 for signal
processing. On basis of this hardware configuration we consider this to be an adequate refer-
ence setup since many of current smartphones show a similar ARM-based configuration. Next
to the external 2 GiB DDR memory it consists of several on-chip memory (OCM) instances.
Analysis of the OCM instances revealed, that only some portions of the RAM shows PUF-like
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behavior after startup. In particular the Level-3 OCM RAM can be partially used to extract
a fingerprint for a given PandaBoard. The Level 3 OCM RAM (L3 RAM) consists of 56 KiB
volatile on-Chip RAM.

Figure 3.1 shows the bitmap of the whole L3 RAM from a PandaBoard shortly after the
device gets out of reset.

Figure 3.1: Bit map of a single enrollment of the L3 OCM RAM from a PandaBoard. The
red area can be used for extracting a fingerprint. The yellow area consists of initialized values
and thus does not show PUF characteristics.

In this project we use u-boot, which is one of the most widely used bootloaders. It
integrates a second-stage bootloader (Memory Locator – MLO), which is small enough to fit
into internal memory, and a third-stage bootloader (u-boot.img). The MLO performs some
hardware initialization as well as the setup of external memory. Afterwards it calls the u-
boot.img), which is copied to external memory, and initializes further hardware components
and eventually calls the operating system kernel. A more detailed scheme of the enrollment as
well as the reconstruction phase of our proof-of-concept is depicted in Figure 3.2 and Figure
3.3.

The evaluation of the PUF characteristics were performed on five different PandaBoards
with 1000 measurements for each device. We conducted analysis on the Hamming Weight, the
within-class Hamming distance as well as the between-class Hamming distance. The results
for all the metrics showed almost ideal characteristics, which can be looked up in detail in
the original paper (see Appendix A.1).

3.4 Secure PRNG Seeding

This project deals with the problem of weak seeds used to initialize PRNGs. Such weak seeds
lead to the PRNG generating predictable random numbers. The project presents a lightweight
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software-only approach to generate secure seeds on commercial off-the-shelf microcontrollers.
After identifying and evaluating SRAM in commercial off-the-shelf microcontrollers as an
entropy source for PRNG seeding, the start-up patterns of two popular types of microcon-
trollers, a STMicroelectronics STM32F100R8 and a Microchip PIC16F1825 were measured
and evaluated. Also, an efficient software-only architecture for secure PRNG seeding was im-
plemented. After analyzing over 1 000 000 measurements in total, we conclude that of these
two devices, the PIC16F1825 cannot be used to securely seed a PRNG. The STM32F100R8,
however, has the ability to generate very strong seeds from the noise in its SRAM start-up
pattern. These seeds can then be used to ensure a PRNG generates high quality data. Figure
3.1 depicts the general architecture of the proposed approach.

Embedded SRAM
providing Entropy

Entropy extraction
with Conditioning

Algorithm

Start-Up
Pattern

Seed

Pseudo-Random
Number Generator

PRNG

Random
Bitstream

Figure 3.1: Architecture for secure seeding of PRNGs. SRAM start-up patterns are used as
a source of entropy, which is subsequently exploited for generating a secure seed.
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ABSTRACT
This paper presents a light-weight secure boot solution par-
ticularly suitable for mobile commercial off-the-shelf hard-
ware such as mobile phones and tablet PCs. Secure boot is
enabled by employing intrinsic Physically Uncloneable Func-
tions, which are derived from the process variations of static
random-access memory in these devices. In contrast to the
traditional secure boot approach employing TPMs, our so-
lution does not need additional hardware, making it more
flexible and cost efficient. The deployment of the PUF only
requires the modification of the bootloader and the pres-
ence of components, which are already widely available on
the targeted devices. In a proof of concept, our solution
is embedded in an state-of-the-art commodity system-on-a-
chip platform, whose architecture is common to most cur-
rent smartphones and tablets. As a result of the subsequent
evaluation, we show that the quality of the intrinsic PUF
characteristics in our solution is almost ideal.

Categories and Subject Descriptors
B.3.1 [Semiconductor Memories]: SRAM; D.4.6 [Security
and Protection]: Cryptographic controls

General Terms
Security

Keywords
Software binding, Physically Unclonable Functions, Embed-
ded Security, System-on-a-Chip

1. INTRODUCTION
With the proliferation of mobile computing (like smartphones
and tablets) the influence of mobile devices on our every day
communication increases. As the computational power of
these devices steadily grows they serve as a platform for vari-
ous applications, which used to be run on traditional desktop
PCs and laptops. Such applications range from business ap-
plications over access to social networks to security-critical
scenarios like online banking.

However, due to the dissemination and the ongoing trend
of employing mobile devices as a full-grown replacement of
traditional computing hardware, they are already a worth-
while target of cyber-criminals. Malware targeted at mobile
operating systems (e.g. Android or iOS) is being actively
developed and already achieved a comparable complexity as
their counterparts infecting desktop PCs and laptops [15].
Malware prototypes with simple logic – like Cabir worm tar-
geting Symbian OS [9] – were developed further to actively
deployed malware of high complexity [16]. Even advanced
malware like Android rootkits [18] exists today. This trend
is reflected in a constantly growing number of mobile appli-
cations which are identified as behaving maliciously [17].

Due to the rising number of mobile malware as well as
the fact that sensitive data is increasingly often stored on
and shared among such devices, a trustworthy environment
for mobile devices is needed. To ensure an overall protec-
tion, a security mechanism needs to be anchored at a low
level of the platform architecture of the involved embedded
device and preferably rely on a hardware-based anchor of
trust. A secure boot approach can achieve these require-
ments by establishing trust in the operating system that
was booted and thus mitigate malicious modifications of
the operating system, for example by rootkits. Current ap-
proaches such as Trusted Platform Modules provide a so-
lution, yet they require additional hardware modifications
which might be uneconomic for low-end devices, impeding a
broad commitment to such approaches. Besides the protec-
tion of end-users, vendors want to prevent malicious mod-



ifications of their firmware and mobile operating systems
to protect carrier-specific services and thus their business
model from such threats.

In this paper we propose a light-weight secure boot ap-
proach, which guarantees a verified system state at boot
time and thus provides protection from firmware or kernel
modifications by rootkits or other attacks. The proposed
solution extracts an identifier from the underlying hardware
to generate a cryptographic key at boot time, which is used
to bind a software instance to the platform.

1.1 Contributions
The proposed approach uses intrinsic Physical Unclonable
Functions (PUFs), which are based on the process vari-
ations of static random-access memory (SRAM) found in
commodity hardware. These PUFs are used to generate
an ephemeral cryptographic key during an early boot stage,
which is unique for each device and used to authenticate the
software running on the platform.

We achieve a light-weight key storage solution which does
– in contrast to current TPM approaches – not require the
integration of additional hardware. The key generation and
decryption mechanism is implemented at the earliest stage
of the booting process to decrypt the bootloader and thus
build a chain-of-trust to guarantee a verified state at boot
time. Since the cryptographic key is generated on the fly, it
only exists in memory during the phase of decryption and
is never stored permanently. Thus, the attack surface for
invasive key extraction attacks is highly decreased. As the
cryptographic key is unique for every individual device, it is
not possible to provide a generic attack even if adversaries
would succeed in deriving the key from a device. Thus, the
economic motivation for an adversary is low.

We show how to instantiate the technologies on the Panda-
Board, which is a system-on-a-chip (SoC) platform utiliz-
ing state-of-the-art ARM-based processors, typifying mod-
ern smart phones.

2. RELATED WORK
2.1 Current developments regarding PUFs
A Physically Unclonable Function (PUF) is a complex phys-
ical structure that generates a value y in response to a stim-
ulus x. The response y depends on the challenge x as well
as on the micro- or nanoscale physical structure of the PUF
itself. It is assumed that the PUF is unclonable such that
it can not be reproduced, not even by the manufacturer.
The challenge-response behavior of the physical system is
complex enough such that the response to a randomly se-
lected challenge can not be predicted. Furthermore, due to
minuscule manufacturing variations during the production
process, embedded PUFs can be used to robustly identify a
silicon chip.

Silicon-based PUFs can be delay-based or memory-based
PUFs. For an exhaustive overview of PUFs and details on
their taxonomy we refer to [14]. It has been shown that se-
lected statical random-access memory (SRAM) shows PUF-
like behavior [10]. Further research in this area support the
applicability of SRAM as a Physical Unclonable Function

[13] [12]. Using SRAM as PUFs exploits manufacturing vari-
ations which manifest themselves in a bias of memory cells
inside of SRAM modules. During the power up phase these
cells initialize to either the value of zero or one. Most cells
prefer to initialize to one of both values, which in total cre-
ates a start-up pattern we will exploit to generate a finger-
print for the device. Since not all of the SRAM bytes show a
stable behavior in such sense that they are always initialized
to a fixed value, the SRAM start-up values include a small
amount of unstable bits, so-called noise. Since the goal is to
reconstruct a reliable cryptographic key from several noisy
measurements, the noise is eliminated by employing a Fuzzy
Extractor [8], which extracts the stable part of the PUF re-
sponse and transforms it to a uniformly distributed value.
The Fuzzy Extractor implements two functions, an enroll-
ment function and a reconstruction function. During the en-
rollment phase, which ought to be performed by the mobile
phone’s manufacturer, the Fuzzy Extractor takes a reference
measurement R as input and outputs a cryptographic key
Ki as well as Helper Data Wi. In the reconstruction phase,
Ki will be reconstructed out of a noisy measurement with
help of Wi. The Helper Data can be stored publicly since it
does not leak information about Ki.

2.2 Current approaches to secure boot
Traditional approaches to secure boot involve the usage of a
Trusted Platform Module (TPM) or rely on vendor-specific
TPM-like security extensions like ARM’s TrustZone [2], TI’s
M-Shield [11] or implementations of secure virtual machines
from Intel or AMD. The TPM [6] was proposed by the
Trusted Computing Group and constitutes a hardware-based
solution with the TPM chip implementing cryptographic
primitives such as random number generators, a crypto-
graphic coprocessor and a secure memory. The latter is
primarily used to store cryptographic keys and certificates
and more. Additionally, TPMs for mobile devices, so-called
Mobile Trusted Modules (MTMs), have been developed.

In [4] the authors propose a PUF-based solution to protect
cryptographic keys inside the TPM chip from non-invasive
attacks as they are sent over the internal bus. They integrate
a PUF-instance inside the TPM and use it to encrypt TPM
keys before they are sent over the internal bus to mitigate
key extraction by probing the bus lines. Even though this
approach also employs a PUF instance to generate a key
based on the underlying hardware it still requires a TPM
chip to realize the actual secure boot.

In this work we focus on memory-based PUFs found in stat-
ical RAM in commercial off-the-shelf (COTS) devices. We
use the intrinsic SRAM PUF to generate a device-specific
cryptographic key at boot time to bind a legit kernel to
the platform and thus guarantee a trusted operating system
state without additional hardware requirements. To the best
of our knowledge this is the first implementation of a secure
boot approach, which is completely based on PUFs without
requiring additional hardware modifications.

3. ARCHITECTURE
3.1 General Architecture
The proposed light-weight secure boot solution is designed
to be implemented on commodity mobile devices. Our solu-
tion only requires hardware components which are already



present in virtually any computing device. In particular, we
require the mobile devices to be equipped with a masked
read-only memory (ROM), a SRAM module and a CPU.
Furthermore, we assume that the device is started by a two-
staged booting process, involving a second-stage bootloader
as well as a third-stage bootloader1. This multipart boot
process is common for embedded devices as well as for x86
processors (e.g. using GRUB bootloader).

Our design employs an second-stage bootloader and an en-
crypted 3rd-stage bootloader tailored for one device. The
second-stage bootloader is wired programmed in a masked
ROM and which gets executed as the first binary after the
device startup. It queries the SRAM PUF, deriving the
device-dependent key K. This key is used to decrypt the
third-stage bootloader, stored on non-volatile memory (e.g.
flash memory). After successful decryption the third-stage
bootloader will derive a second key K′. This key is sub-
sequently used to decrypt the compressed kernel file of the
firmware, which is also stored in NVM. This design assures
that only a third-stage bootloader, which is encrypted by
the correct, device-depended cryptographic key K, can be
executed. Since the second key K′ is derived from K also
only such firmware can be properly loaded and executed,
which was encrypted by the correct key as well. Thus, the
operating system will only boot properly, if the correct com-
bination of hardware and software is in place. The overall
architecture is depicted in Figure 1.
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Figure 1: Scheme of the reconstruction process of
the ephemeral key inside the secure boot architec-
ture.

3.2 Attacker Model
We consider an attacker model where the attacker has digi-
tal access but can not physically attack the platform, which
is the conventional model for TPM designs. The attacker
represents malicious software, which tries to modify the ker-
nel or the firmware of the embedded device. The intention
of the malware is to achieve a stealthy and persistent instal-
lation of itself on the device for the purpose of logging PINs
and secrets or mounting a hidden remote backdoor to the
device. The malware tries to hook itself inside the system
at kernel space level.

Additionally, the attacker model considers software, which

1The first-stage bootloader usually resides in on-chip ROM
and is pre-installed by the board manufacturer. It performs
basic initialization like multi-core startup, clock configura-
tion and power management and can not be modified by the
IP vendor.

can not be classified as malware. However, it is used to ex-
ploit vulnerabilities in the firmware to escalate the owner’s
privileges on the device to enable functions or install soft-
ware, which are prohibited by the manufacturer’s business
model or terms and conditions. In the field of smartphones
this process is referred to as ’rooting’.

4. PROOF OF CONCEPT
4.1 Hardware Platform
We evaluated our approach through an implementation on a
System-on-a-Chip (SoC) platform. We selected a SoC archi-
tecture as most of the modern smartphones and tables are
designed as such and the increasing usage of SoCs in mobile
devices makes it likely that future devices will be designed
using the same principle. We selected the PandaBoard [1]
as basis for our implementation. The PandaBoard (ES)
is an OMAP4430 (4460) based platform comprising of two
ARM Cortex-A9 as well as two Cortex-M3 for signal pro-
cessing. On basis of this hardware configuration we con-
sider this to be an adequate reference setup since many of
current smartphones show a similar ARM-based configura-
tion. Next to the external 2 GiB DDR memory it consists
of several on-chip memory (OCM) instances. The following
OCM instances can be found on the platform: 1.) OCM
Save-and-Restore ROM (4 KiB) 2.) OCM Save-and-Restore
RAM (8KiB) 3.) Level-3 RAM (56 KiB).

Analysis of the OCM instances revealed, that only some por-
tions of the RAM shows PUF-like behavior after startup. In
particular the Level-3 OCM RAM can be partially used to
extract a fingerprint for a given PandaBoard. The Level 3
OCM RAM (L3 RAM) consists of 56 KiB volatile on-Chip
RAM. It is shared among different sub-modules of the Pand-
aBoard, including the Cortex-M3 subsystem, the digital sig-
nal processing subsystem as well as IVA-HD, which is used
for image and video hardware processing. The partitioning
of the L3 RAM is defined by the L3 firewall logic. To extract
a fingerprint from the startup values of the L3 OCM RAM,
the values need to be extracted before any initialization is
done. This is due to the fact that during the initialization
the values residing in the L3 OCM RAM and consequently
any identifying features of the PUF are overwritten. Thus,
the L3 RAM was first evaluated whether it is not exposed
to any initialization routine.

Figure 2 shows the bitmap of the whole L3 RAM from a
PandaBoard shortly after the device gets out of reset.

The middle as well as high address space of the memory re-
gion is dominated by repeating structures. Since no other
submodules are initialized at this early phase of boot pro-
cess, we assume that these patterns represent structures
used by the first-stage ROM code, which is shipped with
every PandaBoard and is copied to OCM RAM even before
the second-stage bootloader is called. The repeating struc-
tures might be caused by the ROM code’s API interfaces.
Furthermore, we assume that the OCM RAM is used in a
similar way as a stack, since only higher addresses exhibit
such patterns. In the area of the first 12 KiB (0x40300000
- 0x40303000) an apparently random distribution of zeros
and ones can be seen.

This memory range refers to the part of the OCM RAM



Figure 2: Exemplary bitmap of a single PUF en-
rollment of a PandaBoard. The red area is used
for fingerprint extraction. The yellow area contains
initialized values and does not show PUF character-
istics.

we selected for further analysis. The results indicate that
this portion of uninitialized memory shows good PUF char-
acteristics (see Chapter 5.1) so that the modification of the
bootloader – which includes the implementation of the Fuzzy
Extractor and the residual architecture – could proceed.

4.2 Enrollment
During the enrollment phase the keys K and K′, as well
as the Helper Data W are derived from a randomly chosen
secret and a reference measurement of the SRAM. The keys
are used to encrypt the 3rd-stage bootloader (u-boot.img),
respectively the kernel image file (uImage). The Helper Data
is required to reconstruct the keys from additional noisy
measurements employing a Fuzzy Extractor. Eventually,
the Helper Data, as well as the encrypted files are stored
in non-volatile memory (e.g. the flash card). The enroll-
ment procedure is performed by the manufacturer and is
conducted once per device. Figure 3 depicts the enrollment
procedure.

4.3 Reconstruction
In this project we use u-boot [7][5], which is one of the most
widely used bootloaders. It integrates a second-stage boot-
loader (Memory Locator — MLO), which is small enough to
fit into internal memory, and a third-stage bootloader (u-
boot.img). The MLO performs some hardware initialization
as well as the setup of external memory. Afterwards it calls
the u-boot.img, which is copied to external memory, and
initializes further hardware components and eventually calls
the operating system kernel.

Our implementation uses the MLO, which is the first piece of
code to be executed and which performs the extraction of
the memory chip’s fingerprint. This is done by reading the
uninitialized bytes of the SRAM region that exhibit PUF
characteristics, and processing it using the Fuzzy Extractor
to derive the device-dependent key K. During the recon-
struction process a noisy SRAM measurement R′ as well as
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Figure 3: Scheme of the enrollment process to gen-
erate the keys and Helper Data.

W is processed to reconstruct K, which subsequently de-
crypts u-boot.img. Accordingly, K in combination with
u-boot.img is used to derive K′, which is used to decrypt
uImage and to continue the boot process. A detailed scheme
of the reconstruction process is depicted in Figure 5.
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4.4 Fuzzy Extractor Design
To reproduce the secret key K from various noisy measure-
ments a Fuzzy Extractor is required. Following the sugges-



tions of [3], we decided to implement a concatenated code
comprising of a Golay code in combination with a linear rep-
etition code. Furthermore, this concatenated code suffices
to correct the amount of noise, which was estimated dur-
ing the statistical analysis in Chapter 5.1. Using a binary
Golay-(23,12,7) code in combination with a Repetition code
with r = 15 repetitions, we are able to achieve a False Re-
jection Rate of almost 10−8 for key reconstruction given a
maximum noise of 15%, which can be regarded as a reference
value for SRAM PUF noise in literature.

Figure 5: False Rejection Rate of the key recon-
struction using the Fuzzy Extractor.

The implemented Fuzzy Extractor requires 900 bytes of SRAM
data to reconstruct a 22 Byte secret. This secret is further
processed by a SHA-1 hashing function to produce a key
K. The implementation requires only 0,07% of the available
SRAM memory.

5. EVALUATION
In this section we evaluate the PUF characteristics of intrin-
sic SRAM cells on the PandaBoard. The following measure-
ments were performed on 5 PandaBoard instances. The de-
vices include two versions of the platform - an early version
of the PandaBoard equipped with an OMAP4430 and an ad-
vanced version, PandaBoard ES, based on an OMAP4460.
The devices were triggered using a controller to repetitively
turn the devices on, query the intrinsic PUF instance and
turn it off. In between these queries a break of 15 sec-
onds was introduced to give the SRAM the chance to un-
charge. Using this setup, we conducted 1000 measurements
per board. Figure 6 shows the hardware setup to automati-
cally the PUF inside each of the PandaBoards.

5.1 Intrinsic PUF Characteristics
The explored intrinsic PUF instance was statistically ana-
lyzed regarding its quality to be used as an identifier for a
given platform.

Hamming Weight. The Hamming Weight HW (x) of indi-
vidual measurements from the same PandaBoard indicates
whether the start-up values are biased to either 0 or 1. This
measurement gives a first impression on the randomness
present in the start-up values. Our measurements show
that the SRAM start-up values have HW (x) = 48.53%
in the worst case, which is close to the ideal value with
HW (x) = 50% representing almost the same amount of ze-
ros and ones (Figure 7).

Figure 6: Hardware setup for automated PUF mea-
surements.

Figure 7: Fractional Hamming Weights of SRAM
start-up values.

Within-class Hamming Distance. The within-class Ham-
ming distance test gives an indication whether the PUF re-
sults are stable when queried repeatedly. This robustness
of the start-up values is required to reliably identify a given
device and subsequently reconstruct the corresponding cryp-
tographic key. Therefore, an optimal value for the Within-
class Hamming Distance is close to zero. However, all start-
up values show a certain amount of instability (noise). The
numbers in Figure 8 show a maximum within-class Ham-
ming Distance of 4.67%.

Between-class Hamming Distance. The between-class Ham-
ming distance test expresses whether the start-up values
of different devices for the same challenge are independent.
This measure states whether the start-up values can be used
to uniquely identify a given device without enabling adver-
saries to predict a measurement for a second device on the
basis of a given device for which the start-up values are
already known. The optimal value for between-class Ham-
ming Distance is 0.5, which refers to two start-up values
with maximum difference. The statistics in Figure 9 attest
almost optimal values with a minimum between-class Ham-
ming Distance of 49.66%.



Figure 8: Within-class fractional Hamming distance
of SRAM start-up values.

Figure 9: Between-class fractional Hamming dis-
tance histogram.

6. CONCLUSIONS
In this paper we proposed a light-weight secure boot ap-
proach using Physically Unclonable Functions found in com-
modity hardware. Our approach does not require additional
hardware and sets up a chain-of-trust using standard com-
puting components. The proposed solution guarantees a
trusted state at boot time, which mitigates malicious modifi-
cations of the firmware or the operating system. We demon-
strated the feasibility of our approach by implementing it on
a state-of-the-art OMAP-based system-on-a-chip platform.
The analysis of the extracted on-board PUF instance at-
tested almost optimal performance.
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Abstract. The generation of high quality random numbers is crucial to many
cryptographic applications, including cryptographic protocols, secret of keys,
nonces or salts. Their values must contain enough randomness to be unpredictable
to attackers. Pseudo-random number generators require initial data with high
entropy as a seed to produce a large stream of high quality random data. Yet,
despite the importance of randomness, proper high quality random number
generation is often ignored. Primarily embedded devices often suffer from weak
random number generators. In this work, we focus on identifying and evaluating
SRAM in commercial off-the-shelf microcontrollers as an entropy source for
PRNG seeding. We measure and evaluate the SRAM start-up patterns of two
popular types of microcontrollers, a STMicroelectronics STM32F100R8 and a
Microchip PIC16F1825. We also present an efficient software-only architecture
for secure PRNG seeding. After analyzing over 1 000 000 measurements in total,
we conclude that of these two devices, the PIC16F1825 cannot be used to securely
seed a PRNG. The STM32F100R8, however, has the ability to generate very
strong seeds from the noise in its SRAM start-up pattern. These seeds can then
be used to ensure a PRNG generates high quality data.

Keywords: Secure seeds, PRNG, Static RAM, Security

1 Introduction

The generation of high quality random numbers is crucial to many cryptographic
applications. Almost every cryptographic protocol involves the use of keys, nonces or
salts which are unpredictable to attackers. Such values must exhibit a sufficient degree
of randomness, i.e., contain enough entropy. In addition, re-keying is applied regularly
to prevent a wear-out effect of secret keys. Finally, public-key cryptosystems, such as
RSA and ElGamal, rely on random numbers to generate public/private key pairs.

Yet, despite its importance, proper high quality random number generation is often
ignored. Random data with too little entropy results in weak keys, nonces or salts,
which can then be guessed with minimal effort, thereby compromising even the strongest



cryptosystem. Hence, the quality of random data ultimately affects the level of security
of cryptographic primitives and protocols in practice. Although many cryptographically
secure pseudo-random number generators (PRNG) exist, all of them require to be
seeded with initial data containing sufficient entropy. Once seeded, they are able to
generate high quality random output for long periods of time. Providing PRNGs with a
low quality initial seed, however, will cause them to generate weak, predictable output.

Neglecting to ensure sufficient entropy in PRNG seeds gave rise to several security
incidents. A famous case was the OpenSSL implementation in Debian [15]: by acciden-
tally decreasing the number of available randomness sources for seeding, the generated
random numbers became predictable. This incident affected numerous TLS/SSL con-
nections, keys for SSH accounts, as well as the security of Tor users [4]. More recently,
Heninger et al. [7] and Lenstra et al. [11] conducted an Internet-wide survey and looked
for security problems in public keys and certificates of TLS and SSH servers, caused by
low quality random number generation. The authors were able to recover private keys
of several devices due to common factors in public RSA keys. Their results indicate
that primarily embedded devices, such as routers, firewalls and VPN appliances, are
affected. The source of these problems are likely PRNGs that were not seeded with
high entropy data on start-up.

In this work, we focus on identifying and qualifying Static Random Access Memory
(SRAM) in commercial off-the-shelf (COTS) microcontrollers as an entropy source
for PRNG seeding. We take advantage of the fact that the start-up values of SRAM
are noisy. This noise is collected upon boot time to derive a high quality, high en-
tropy PRNG seed by applying a hash function to the initial memory contents. We
measure and evaluate the entropy in SRAM start-up patterns in two common types
of microcontrollers, an STMicroelectronics STM32F100R8 (ARM Cortex-M3) and a
Microchip PIC16F1825. Furthermore, we suggest an architecture for seed extraction and
pseudo-random number generation, which makes efficient use of the available resources
in a COTS microcontroller.

The paper is structured as follows. After surveying related work in Section 2, we
analyze and evaluate the noise in the SRAM start-up patterns of the aforementioned
microcontrollers in Section 3. In Section 4, we present the architecture for an efficient
SRAM-based secure seed generator and PRNG. Furthermore, we present our attacker
model and discuss practical aspects relating to the implementation of our architecture.
Finally, we conclude the paper in Section 5.

2 Related Work

Random number generation. In order to generate random numbers for cryptographic
applications on microcontrollers, two basic methods can be used. The first method
requires a physical source, which is truly random and from which bits can be derived di-
rectly. Such non-deterministic sources derive their randomness from underlying physical
properties that exhibit unpredictable behaviour. Examples of such sources of random-
ness in chips are free running oscillators connected to a shift register [19] and noise on
the lowest bits of AD converters [17], but many more exist. There are two important
downsides to most of these physical RNG constructions. Firstly, they require specific
hardware to extract the randomness from the physical entities on the device. Secondly,



the throughput of such RNGs is generally relatively low. This is problematic when large
streams of random bits are required for cryptographic applications.

The second approach to generate randomness is by using PRNGs, which are de-
terministic algorithms. An introduction to PRNGs can be found in [1]. The output of
such a generator only seems random to observers without prior knowledge. However, if
an observer knows which data has been used as a seed for the PRNG, then he will be
able to calculate all output values of the generator. Hence, this seed value should be
randomly chosen (and kept secret). The upside of this type of generator is that it can
be implemented completely in software and therefore does not require any hardware
additions to a microcontroller. Also, it can produce a stream of (pseudo-)random output
bits at a high throughput rate.

The benefits of a PRNG greatly outweigh those of a true random number generator
on a COTS microcontroller. The necessity of generating a truly random seed is of
crucial importance though. Our goal is to identify and evaluate methods that can be
used to generate strong seeds for a PRNG and that are already available in COTS
microcontrollers, thus requiring no hardware modifications.

SRAM as sources of entropy. Our approach of generating a seed value is based on
random noise extracted from the power-up state of SRAM modules, which are part of
COTS microcontrollers. SRAM bit cells are designed as cross-coupled inverters, which
exhibit a bi-stable behaviour. When powered on these cells eventually settle from a
meta-stable state to a stable state, either zero or one. It was shown by Guajardo et al.
[6] that memory cells are often biased to zero or one, due to uncontrollable physical
conditions during the manufacturing stage leading to one of the inverters being slightly
stronger than the other. Some cells, however, will be almost perfectly symmetric, which
leads them to settle to an unpredictable value at start-up. It is the noise due to these
cells which we exploit in order to generate high quality random seeds.

The general idea of using SRAM as a source for PRNG seeds was investigated in [8] as
well as in [10]. However, the former paper proposes to use a universal hash to generate a
single random number at start-up. This technique is then verified on an external SRAM
module. However, it is not investigated whether the approach works on the embedded
SRAM in COTS microcontrollers. In the latter paper, the feasibility of creating a
strong PRNG with the use of random data from an ASIC containing SRAM-based
Physically Unclonable Functions (PUFs) [12] is investigated. In contrast, our goal is to
identify COTS microcontrollers which can be used without any hardware modifications
to support high quality random number generation and hence cryptographic protocols.

In Mowery et al. [18], the authors gather entropy from the clock jitter between
different clock domains on a CPU. Their approach is quite slow, however, and obviously
does not work on embedded devices with only a single clock domain. In cases where
their approach is feasible, it can be combined with our method in order to increase the
amount of gathered entropy.

3 Evaluation of Entropy in SRAM Start-up Values

For the purpose of extracting a random seed from SRAM start-up values, it is important
to investigate their entropy contents. In this section, our approach to quantify the



entropy quality of the SRAM patterns (namely the calculation of min-entropy) is
explained. We will also present the hard- and firmware used to measure the SRAM
start-up pattern of two popular COTS microcontrollers. Finally, we show and discuss
the measurements for these two devices under different ambient conditions.

The first investigated microcontroller is the 32-bit STM32F100R8 by STMicroelec-
tronics, an ARM Cortex-M3 chip. The second one is the 8-bit PIC16F1825 by Microchip,
part of Microchip’s range of high-end 8-bit processors. Both of these chips were chosen
for their popularity. The STMicroelectronics chip was chosen due to the Cortex-M
family being ARM’s fastest licensing processor family to date. The Cortex-M family
was licensed 168 times by Q4 2012 [13], with 23 billion of these chips sold last year.
Microchip has the 4th largest market share in the extremely fractioned microcontroller
market [14].

3.1 Method of deriving min-entropy

To extract a high quality seed from the SRAM start-up values we have to examine
their randomness properties in terms of entropy. In particular, the amount of entropy
must be present in the noise of SRAM start-up patterns should be determined. For
this purpose we will be calculating the min-entropy in the same manner as was done
in [10]. This method is based on the NIST specification [3] that defines min-entropy
as the worst-case (i.e., the greatest lower bound) measure of uncertainty for a random
variable.

For a binary source, we can define the min-entropy as

Hmin = − log2(max(p0, p1)),

where p0 and p1 are the probabilities of 0 and 1 occurring. Assuming that all bits
from the SRAM start-up pattern are independent, each bit i can be viewed as an
individual binary source. For each of these sources we estimate the probabilities pi

0 and
pi

1 of powering up in state 0 or 1, by repeatedly measuring the power-up values of the
SRAM. In case m subsequent measurements are performed, pi

0 denotes the number of
occurrences of a zero, divided by m and pi

1 = 1− pi
0. For n independent sources (where

n is the length of the start-up pattern), we have:

Hmin =
n∑

i=1
− log2(max(pi

0, pi
1))).

Hence, under the assumption that all bits are independent, we can sum the entropy of
each individual bit to derive the min-entropy of the entire SRAM. In the remainder of
this work, we generally denote the available min-entropy as a percentage of the total
available SRAM size.

3.2 Measurement setup

In this subsection, we present the soft- and hardware setup used to evaluate COTS
microcontrollers. First, we present the functionality and requirements of the firmware
that has to be put into each microcontroller to be measured. Thereafter, we describe
the hardware construction used to extract start-up values for later evaluation.



Firmware design Every microcontroller to be measured should be programmed with
firmware that, on power-up, initializes the serial port and then starts transmitting
the value of each SRAM byte in sequence. Once finished, it should enter an idle
loop. Care should be taken not to use any of the SRAM storage while doing this.
Most microcontrollers have a several working registers to store variables, such as a
pointer to the current SRAM byte, and thus this will be easy to achieve. However,
some microcontrollers, such as the Microchip PIC16 family, only have a single working
register and therefore, in order not to write data to any SRAM byte, some variables
will have to be stored in unused configuration registers.

Hardware setup. To get some initial measurements of the SRAM power-up patterns, we
first conduct our experiments manually. In this setup, the microcontroller to be measured
has its power lines and serial port connected to an external serial TTL–to–USB converter.
The converter is connected to a self-powered USB hub. After an SRAM measurement
has been taken, power to the microcontroller is switched off (i.e. left floating) for at least
10 seconds. This is to ensure that the microcontroller has discharged completely and
that the SRAM will contain fresh data on the next power-up. Although this discharging
cycle works fine for the STM32F100R8 devices, it does not for the PIC16F1825 devices,
which keep their SRAM values for over 10 minutes when their supply pins are left
floating.

In order to extract start-up patterns faster and efficiently, we created a custom
measurement board. The requirements for this board are:

1. Allow connection of many microcontrollers at once.
2. Be extensible with regards to number of attached microcontrollers.
3. Support remote setup.
4. Make automated, unsupervised measurements possible.
5. Support any realistic baud rate.
6. Support any arbitrary SRAM size.
7. Supply upwards-going, fast rising (≤2 ms) Vcc signals.
8. Actively discharge microcontrollers that are not being measured.

Requirements 1 and 2 are satisfied by using (de)multiplexers for the power supply and
serial transmission (TX) lines of the attached microcontrollers. The controller board
interfaces with a PC, thereby meeting requirements 3 and 4. The controller clock signal
is generated with a specialized clock, and the baud rate can also be set though the PC
interface, thus fulfilling requirement 5. Requirement 6 is met by detecting when the TX
line of the currently powered microcontroller goes idle, at which point the controller
board advances to the next connected microcontroller. In order to generate realistic
start-up patterns, requirement 7 should be met. We used an oscilloscope to verify that
this was the case for our controller board. Finally, requirement 8 is necessary in order
to erase the state of the SRAM completely on power-down. The demultiplexer on our
controller board connects non-active power lines to ground, thereby this last requirement
is met as well.

A simplified schematic of our design is shown in Fig. 1. In its current state, it allows
us to connect up to 16 microcontrollers. This can be extended to at least 1024 devices,
in case this should prove necessary.
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Fig. 1. High-level schematic of the measurement controller board (left) with a board of
microcontrollers to be measured attached (right).

3.3 STMicroelectronics STM32F100R8

The first device that has been tested for entropy in the SRAM start-up values is the
STM32F100R8 from STMicroelectronics. This is a 32-bit ARM Cortex-M3 device with
8 KiB of SRAM. Of this device 10 samples have been used to perform a large number of
measurements. An example of a start-up pattern (measured at +25 ◦C) of the SRAM
in this microcontroller can be found in Fig. 2.

To make sure that the STM32F100R8 provides sufficient noise entropy under different
circumstances, measurements have been performed at −30◦C, +25◦C and +90◦C. Using
these measurements the min-entropy has been derived (with the method described in
Section 3.1), the results4 for the different conditions can be found in Table 1.

Table 1. Min-entropy results for STM32F100R8 SRAMs at different temperatures. Min-entropy
denoted as percentage of total available SRAM.

Temp. Microcontroller ID
[◦C] 1 2 3 4 5 6 7 8 9 10

−30 5.3% 5.3% 5.4% 5.5% 5.4% 5.3% 5.4% 5.2% 5.3% 5.8%
+25 6.6% 6.6% 6.7% 6.8% 6.7% 6.5% 6.8% 6.5% 6.7% 6.7%
+90 6.3% 6.5% 6.5% 6.6% 6.2% 6.5% 6.5% 6.2% 6.5% 6.5%

From the results in Table 1 it is clear that the STM32F100R8 devices contain
a minimum amount of 5.2% min-entropy under all tested circumstances. Given the
4 Min-entropy is expressed here as a percentage of the length of the start-up pattern. Hence,
6.0% in this 8 KiB memory is approximately equal to 491.5 bytes min-entropy.



Fig. 2. Example start-up pattern of STM32F100R8 (8 KiB SRAM) at +25 ◦C. White represents
a bit with value 0, black a bit with value 1.

fact that the measured SRAMs have a size of 8KiB, it is evident that by using these
memories as input for a hash function it is no problem to derive a truly random seed
for a PRNG5. If for example, assuming the entropy is evenly spread out over the entire
SRAM, we would like to derive a truly random seed of 256 bits and consider a min-
entropy of 3% (which is on the safe side, given the lowest min-entropy of 5.2% from the
analysis), the required amount of SRAM to derive this seed is only 1.04KiB. For a more
cautious approach, in which no assumptions are made about the entropy distribution,
see Appendix B.

3.4 Microchip PIC16F1825

The second commercially available microcontroller that has been evaluated, is the
Microchip PIC16F1825. This is an 8-bit microcontroller with 1 KiB of SRAM. Under
the same conditions as described in the previous section, a large number of measurements
of the SRAM start-up patterns of 16 different devices have been performed. A plot of
one of these start-up patterns (measured at +25 ◦C) is given in Fig. 3. It is evident
from this plot that there is severe biasing in the start-up pattern. The plot clearly
shows that the bits from the PIC16F1825 memories possess a pattern which is far from
random. To be more precise: the bits of every alternating byte have a preference to
start-up either as a 0 or a 1. A pattern as can be seen in Fig. 3 is present in every
PIC16F1825 device measured. The preference towards 0 or 1 for each byte results in a
lower noise entropy, because it is less common for these bits to flip since they have a
preferred state to start in. Using these measurements, the min-entropy of the SRAM
noise has been determined in the same way as for the STM32F100R8 devices. The
resulting min-entropies at different temperatures can be found in Table 2.

In comparison to the results of the STM32F100R8 devices, it is clear that the noise
entropy for the PIC16F1825 is significantly lower. For the measurements at room and
high temperatures this can be explained by the severe biasing of the start-up pattern,
which has been discussed already. For the low temperature (at which the min-entropy is
5 A less extensive evaluation STM32F051R8 and STM32F100RB devices seems to suggest
that other devices in the STM32 family contain an equally high amount of entropy in their
SRAM start-up patterns.



Fig. 3. Example start-up pattern of PIC16F1825 (1 KiB SRAM) at +25 ◦C. White represents
a bit with value 0, black a bit with value 1.

Table 2. Min-entropy results for PIC16F1825 SRAMs at different temperatures. Min-entropy
denoted as percentage of total available SRAM.

Temp. Microcontroller ID
[◦C] 1 2 3 4 5 6 7 8

−30 0.9% 1.0% 0.3% 0.2% 0.5% 0.2% 0.2% 0.2%
+25 1.9% 2.0% 1.8% 1.8% 1.9% 1.9% 1.8% 2.0%
+90 3.2% 3.2% 3.2% 3.8% 3.3% 3.5% 3.7% 3.5%

[◦C] 9 10 11 12 13 14 15 16

−30 0.1% 0.3% 0.1% 0.2% 0.2% 0.8% 1.7% 0.1%
+25 1.7% 1.7% 1.8% 2.1% 1.8% 1.7% 1.6% 1.7%
+90 3.6% 3.6% 3.8% 4.1% 3.3% 3.5% 4.0% 3.7%

very close to 0 for most of the devices), the reason is different. Our observation is that
at these temperatures the SRAM start-up patterns exhibit a significant decrease in the
Hamming weight for all tested devices. For all devices the Hamming weight was very
close to 0, which means that almost all bits of the memory start-up as a 0 and only
very few (in the order of magnitude of 1%) as a 1. These results clearly show that by
exposing the PIC16F1825 to (extremely) low temperatures it is possible to make the
start-up pattern of the SRAM more predictable. We shall call this controlled decrease of
entropy a “freezing attack”. Such an attack scenario is outside the scope of our attacker
model (see Section 4.1), since it requires for an attacker to have physical access to the
device to freeze the memory. However, this phenomenon does present a major issue
for usability of the PIC16F1825, because it will not be possible to generate sufficient
entropy for the PRNG seed when ambient temperatures are sufficiently low (e.g. during
wintertime in large parts of the world).

Based on the problems detected at low temperatures, the clearly visible patterns
within the SRAM start-up values (see Fig. 3), and the very small security margin hinted



at by the min-entropy calculations, we advise strongly against using PIC16F1825 devices
to generate a secure seed for PRNG initialization6.

3.5 Discussion of measurement results

From the measurement results in the two previous sections it becomes clear that the
two investigated device types behave very differently. The STM32F100R8 devices show
great results when it comes to deriving entropy from the noise on SRAM start-up
patterns, while the PIC16F1825 are clearly unfit for the purpose of extracting a truly
random seed from this noise. Besides the simple conclusion that when one wants to
implement a PRNG on a microcontroller, which uses a truly random seed derived from
SRAM start-up noise, one should not use the PIC16F1825 but rather the STM32F100R8
devices, this section also takes a closer look at trends that become apparent from the
results of these two devices.

Dependencies on ambient temperature. Fig. 4 provides a visual representation of the
results of the min-entropy measurements from the STM32F100R8 and PIC16F1825
chips at different temperatures from Table 1 and Table 2. In this plot, measurements at
the same temperature are encoded using the same shape for data points.
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Fig. 4. Scatter plot of min-entropy at various temperatures for STM32F100R8 and PIC16F1825.

6 A less extensive evaluation of PIC16F877A and PIC16F721 devices seems to suggest that
other devices in the PIC16F family have similarly low entropy in their SRAM start-up
patterns.



From Fig. 4 we can derive two clear trends. The first is, as already concluded before,
the fact that the min-entropy of the STM32F100R8 memories is greater than that of
the PIC16F1825s under any tested circumstance. More interesting is the second trend,
which shows that the behavior over different temperatures for these two devices is
very different. While the min-entropy of the STM32F100R8 is reasonably stable over
temperature, the min-entropy of the PIC16F1825 shows a clear (perhaps even linear)
correlation with the temperature. In other words: the colder the ambient temperature,
the lower the min-entropy of these start-up patterns.

This behaviour again shows that the PIC16F1825 devices are very much unsuitable
for use in the proposed random number generator. An uncontrollable variable, such as
the ambient temperature, should never be able to influence the amount of entropy that
will be available in the seed of a PRNG.

Dependencies on start-up power curve. During our experiments we have made an
attempt to increase the min-entropy in the start-up patterns of the PIC16F1825 devices
(at room temperature) by making alterations to their power circuitry. Since altering
circuitry goes against the principle employed in this paper, i.e. using unmodified COTS
devices, we will not consider these results in the main story of the paper. More details
on this power-up curve dependency can be found in Appendix A. However, we would
like to point out that altering the shape of the power-up curve on the supply pins of
the PIC16F1825 devices has resulted in a reduction of the bias in the SRAM start-up
patterns, which increases the entropy of these memories. This observation shows the
considerable possibility that the biasing in the start-up pattern is caused by internal
circuitry that is in charge of supplying power to the SRAM. It is possible that (analog)
components inside the PIC16F1825 distort the supply curve before it is able to power-up
the SRAM. Unfortunately Microchip does not provide information about their silicon
implementation, which makes it impossible for us to verify what is happening inside
the devices.

4 Architecture of an SRAM-based RNG

SRAM start-up values, as analyzed in the previous section, can be used to derive PRNG
seeds in an efficient and lightweight manner on low-cost COTS microcontrollers without
the need for extra hardware (along the lines of [10]). In a nutshell, we measure the
start-up contents of SRAM cells right after power up and post-process them in order to
extract a seed (see Fig. 5):

1. First, the device is powered up. Care should be taken that the power-up voltage
follows a nice curve, as explained in Appendix A. Furthermore, the device should
be properly discharged before power-up, such that the SRAM is completely cleared.

2. In the second step, the seed generation algorithm is run: the code reads the entire
SRAM content and applies a hash function to it to derive the seed, as suggested in
[3, 5, 9]. This step ensures a consistently high entropy in the seed value. Note that
this algorithm must be the first code that executes on the device in order to ensure
that the SRAM contains uninitialized data.
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Care should be taken when implementing the hash function: first of all, the hash
function must be designed to be lightweight, as the target embedded platform
probably has limited storage and computational power. Furthermore, any temporary
storage used by the hash function will overwrite parts of the SRAM start-up patterns,
which need to be excluded from seed derivation (in the worst case 8 bits of entropy
from the SRAM start-up pattern are lost for each byte used in the hash function
implementation). Therefore, it is important to select a hash function that requires
a small program size and has limited memory consumption; Appendix B discusses
suitable implementations of the hash function.

3. Finally, the generated hash is used to seed a PRNG, which can then be used to
obtain a stream of random numbers. Implementations for PRNGs are extensively
documented in the literature (for example, see [3, 5, 9]). For use in low-cost devices
we suggest to apply a block cipher in counter (CTR) or output feedback (OFB)
mode, which are known to before as cryptographically secure PRNGs. The reason for
this choice is that a block cipher implementation is most likely already available in
a device which requires cryptographic algorithms; this reduces both implementation
costs and code size compared to implementing a dedicated PRNG algorithm. With
the appropriate construction, a block cipher can also be used as a hash function,
further decreasing costs and code size (see Appendix B).

4.1 Security considerations and attacker model

Crucial for security is to maintain the unpredictability of the data stream produced by
the PRNG. Once an attacker knows the seed, the entire stream becomes predictable.
Thus, care needs to be taken that no other algorithm has access to the seed value —
approaches to achieve this are the subject of a separate field of embedded cryptography
research and thus outside of the scope of this paper.

In this work we assume an attack scenario in which an adversary has no direct
physical access to the microcontroller. Otherwise it would be impossible to ensure that
the power-up SRAM value remains secret, since an adversary can use a debugging



interface such as JTAG to halt the microcontroller during start-up, read out the data
and then let the start-up process continue.

To limit the exposure of the initial SRAM state and prevent attacks where the seed
is re-calculated from SRAM content, all SRAM (except for the seed value) should be
cleared immediately after seed generation. This can be achieved by making sure that the
seeding algorithm is the very first code that runs on power-up and that the algorithm is
executed atomically. Methods to ensure this, such as disabling interrupts and preventing
unauthorized firmware modifications, are outside the scope of this paper.

Finally, in order to guarantee proper SRAM resets in between power-cycles of the
microcontroller, care should be taken that the microcontroller’s positive supply lines
are grounded when the device shuts down. If this is not done, it might power up with
old, predictable data with low entropy still present in SRAM.

5 Conclusion

In this work, the problem of weak seeds used to initialize PRNGs was addressed. Such
weak seeds lead to the PRNG generating predictable random numbers. We presented
a lightweight software-only approach to generate secure seeds on commercial off-the-
shelf microcontrollers. The source of entropy used to generate these seeds is the noise
present in SRAM at start-up. In order to support that such an approach is feasible
with COTS microcontrollers, we measured and evaluated this noise at various ambient
temperatures in two popular devices, the STMicroelectronics STM32F100R8 (an ARM
Cortex-M3) and the Microchip PIC16F1825. Our analysis shows that the SRAM start-
up patterns of the PIC16F1825 devices contain very little entropy, which are thus
unfit for secure seed generation. Furthermore, we address the peculiarities of these
devices under both temperature and supply voltage variations. The SRAM start-up
patterns of the STM32F100R8 devices on the other hand contain a large amount of
entropy, thereby showing that our approach is indeed feasible and that unmodified
COTS microcontrollers using a software-only approach can generate secure seeds for
PRNGs.
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A Dependencies of SRAM Entropy on Start-up Power Curve

In Section 3.4, we have seen that the SRAM start-up patterns of the tested PIC16F1825
devices showed severe biasing at room temperature. Based on the authors’ practical
experience, the most common reason for biased start-up patterns (besides those due
to low temperatures, which were already shown in the same section) is a due to the
suppy voltage ramp-up curve on the SRAM cells. Measuring the supply voltage curve
applied to the PIC16F1825 by our controller board shows a ramp as can be seen on
the left side of Fig. 6. Unfortunately, this is a ramp-up curve which is very common for
powering SRAMs and usually results in proper (unbiased) start-up patterns. However,
this does not mean that the supply voltage curve on the actual SRAMs cannot be the
root-cause. We can only measure the curve on the external pins of the devices and we
do not know what happens internally with the supply voltage before it reaches the
SRAM. It is possible that there are (analog) components connected to the power supply,
which distort the ramp-up on the SRAM. Unfortunately Microchip does not provide
information about their silicon implementation, which makes it impossible for us to
verify what is happening inside the devices.

In an attempt to make the start-up pattern of the SRAMs more random, we have
performed experiments with varying the shape of the supply voltage curve on the supply
pins. One of the shapes that we have tried (and the only one that improved our results)
consists of a short pulse on the supply pin just before the actual ramp-up curve. An
example of such a shape can be seen on the right side of Fig. 6. In this shape the height
and width of the pulse can be varied.

t

Vcc

t

Vcc

0 0

Vdd Vdd

Fig. 6. Original supply voltage curve (left, normal for SRAMs) and altered curve (right).

With the “new” supply voltage curve on the supply pins of the PIC16F1825s, some
devices presented start-up patterns which turned out to be more random than the
original patterns. An example of such a new pattern can be found in Fig. 7. Unfortunately,
we were not able to make the start-up patterns of all PIC16F1825 devices more random
with this method. Also, the height of the pulse before the voltage ramp-up curve (which
resulted in more random patterns for some devices) was different for each individual
device.

The experiments described in this appendix are still in a very preliminary stage and
will be part of future work in the ongoing studies on this topic. What they do show
however, is that the supply voltage curve on an SRAM can have a big impact on the
behaviour of its start-up pattern. Therefore, it is be very important when implementing



Fig. 7. Example start-up pattern of PIC16F1825 (1 KiB SRAM) with altered supply voltage
power-up curve at +25 ◦C. White represents a bit with value 0, black a bit with value 1.

a secure PRNG seed generator as described in this paper to make sure that the supply
voltage curve to the COTS microcontroller allows for good random noise behaviour in
the SRAM start-up pattern.

Furthermore, based on these experiments we can think of at least one additional
attack scenario: a hardware system that supplies a modified power-up curve to the
microcontroller. It is possible on certain devices, with a specific power-up curve, to reduce
the entropy contents of the SRAM to a minimum. Such an attack could be imagined
on a cellphone, in which end-users can easily replace the battery, thus we call this the
“evil battery” attack. Possible countermeasures are the use of power management and
power monitoring circuits.

B On the Selection of a Hash Function

In this section, we discuss the selection of a hash function implementation for secure
seed generation. We make a suggestion for what is, in our opinion, the best choice,
based on memory and code space efficiencies.

Any examples we give, we only give for the STM32F100R8. Due to the extremely low
entropy in its SRAM start-up values (0.1% at −30 ◦C), the PIC16F1825 is not usable
for secure PRNG generation using the suggested approach. Due to entropy being lost to
temporary storage of the hash function, any conceivable hash function implementation
will reduced the available entropy in the PIC16F1825 to 0.

Since it would fall outside the scope of this work, we did not implement any hash
functions. Instead, we base our recommendations on Balasch et al. [2], in which a
wide selection of 25 different hash functions, written in hand-optimized assembly, are
presented. The implementations in [2] are for an 8-bit Atmel AVR chip, and thus not
directly transferable to the chips that we have investigated. However, the required code
sizes can be used as a relative size indicator. More important than code size though is
the required amount of SRAM for temporary storage, which luckily is independent of
the hardware architecture.

The required amount of SRAM for the hash function influences the total remaining
entropy in the SRAM start-up pattern. No assumptions are made about the distribution
of entropy within the SRAM, and therefore one has to assume a worst case scenario in



which every byte of storage used by the hash function removes a full 8 bits of entropy
from the total entropy available in the SRAM start-up pattern.

Assuming a required hash digest size of 256 bit, as required for FIPS 140-3 [16]
compliance, the hash function, of those presented in [2], that requires the least stor-
age is S-Quark, with 69 bytes. An alternative is PHOTON-256/32/32, which requires
82 bytes. If one prefers to use the newest SHA3 algorithm, then Keccak with parameters
r = 144, c = 256 is the choice that requires the least amount of storage (114 bytes).
Instead of using a dedicated hash function, it is also possible to use a block cipher-based
hash construction. In that case, a Hirose/AES-256 construction is ideal, since it requires
only 104 bytes of storage. These requirements, together with the remaining min-entropy
in the STM32F100R8, are listed in Table 3.

Table 3. Hash function SRAM requirements and influence on SRAM entropy in STM32F100R8
(8 KiB SRAM). SRAM consumption data from [2]. Remaining min-entropy based on a pes-
simistic min-entropy estimate of 3% (see Section 3.3).

Hash SRAM Remaining min-
[byte] entropy [bit]

S-Quark 69 1 414
PHOTON-256/32/32 82 1 310
Keccak[r = 144, c = 256] 114 1 054
Hirose/AES-256 104 1 134

It is obvious from Table 3 that the STM32F100R8 microcontroller has plenty
entropy left over in its SRAM start-up pattern for any of the chosen hash function
implementations. The formula used to calculate the remaining amount of entropy in
SRAM for a given amount of memory consumption can be inverted to calculate the
maximum allowed amount of SRAM consumption when requiring a minimum remaining
entropy of 256 bit:

256 ≤ 8 · (8192 · 0.03− x)

⇔ x ≤ 8192 · 0.03− 256
8

⇔ x ≤ 213.76,

(1)

i.e. a hash function implementation on the STM32F100R8 can use a maximum of
213 bytes of SRAM when it is required that at least 256 bits of entropy remain under
worst case conditions7. Thus, for the STM32F100R8, the choice of hash function will
probably not need to depend on the used amount of SRAM, since enough entropy is
likely available. For this microcontroller, the algorithm characteristics to look at then
would be either required code side or execution time, depending on the application.

Note that, as mentioned in Section 4, block ciphers in CTR or OFB mode can be
used as PRNGs. Thus, considering the benefits of code size reduction and a smaller
7 Worst case conditions assume that every byte of SRAM used by the hash function reduces
the total available entropy by 8 bits and that there is only 3% entropy in the SRAM start-up
pattern of the STM32F100R8.



codebase to debug, we recommend the use of a block cipher both for hashing and as an
PRNG. An obvious choice for a block cipher to use is AES, due to the facts that it is
an internationally accepted standard, has been thoroughly studied and not been found
vulnerable to attacks, and many optimized implementations exists for a wide range of
platforms.
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The Spammed Code Offset Method

Boris Škorić and Niels de Vreede

Abstract

Helper data schemes are a security primitive used for
privacy-preserving biometric databases and Physical Un-
clonable Functions. One of the oldest known helper data
schemes is the Code Offset Method (COM). We propose an
extension of the COM: the helper data is accompanied by
many instances of fake helper data that is drawn from the
same distribution as the real one. While the adversary has
no way to distinguish between them, the legitimate party
has more information and can see the difference. We use
an LDPC code in order to improve the efficiency of the le-
gitimate party’s selection procedure.
Our construction provides a new kind of trade-off: more
effective use of the source entropy, at the price of increased
helper data storage. We give a security analysis in terms of
Shannon entropy and order-2 Rényi entropy.

1 Introduction

1.1 Helper Data Systems

The past decade has seen a lot of interest in a field that can
be characterized as ‘security with noisy data’. In several
security applications it is necessary to reproducibly extract
secret data from noisy measurements on a physical system.
One such application is the privacy-preserving storage of
biometric data. Analogously to password hashing, one can
store biometric data in hashed form in order to prevent
inside attackers from learning what the enrolled biometric
features look like. Another application is read-proof storage
of cryptographic keys using Physical Unclonable Functions
(PUFs) [16, 17, 14]. Many types of digital memory can be
considered insecure because of the large inbuilt redundan-
cies needed to ensure reliable readout. PUFs provide an
alternative way to store keys, namely in analog form, which
allows the designer to exploit the inscrutability of analog
physical behavior. Keys stored in this way are sometimes
referred to as Physically Obfuscated Keys (POKs) [8].
In both the biometrics and the PUF/POK application, one
faces the problem that some form of error correction has
to be done, but under the constraint that the redundancy
data, which is considered to be visible to attackers, does
not reveal too much information about the secret extracted
from the physical measurement. The problem is solved by a
special security primitive, the Helper Data System (HDS).
A HDS in its most general form is shown in Fig. 1. The
Enroll procedure takes as arguments a measurement X
and (optionally) a random value R. It outputs a secret S
and Helper Data W . The helper data is stored. In the
reconstruction phase, a fresh measurement X ′ is obtained.
Typically X ′ is a noisy version of X, i.e. close to X but not
necessarily identical. The Rec (reconstruction) procedure
takes X ′ and W as input. It outputs Ŝ, an estimate of S.
If X ′ is not too noisy then Ŝ = S.

Two special cases of the general HDS are the Secure Sketch
(SS) and the Fuzzy Extractor (FE) [6].

• The Secure Sketch has S = X (and Ŝ = X̂, an estima-
tor for X). If X is not uniformly distributed, then S is
not uniform. The SS is suitable for privacy-preserving
biometrics, where high entropy of S (given W ) is re-
quired, but not uniformness.

• The Fuzzy Extractor has a (nearly) uniform S given
W . The FE is typically used for extracting keys from
PUFs and POKs.

There exists a generic construction to create a FE out of
a SS: hashing the output of the SS using a Universal Hash
Function (UHF) [3, 15, 11].
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Figure 1: Data flow in a generic Helper Data System.
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Figure 2: The Code Offset Method employed as a Secure
Sketch.

1.2 The Code Offset Method

One of the oldest known SS constructions is the Code Off-
set Method (COM) [10, 6]. Here X is a binary string, say
of length n, with probability distribution ρ. The construc-
tion uses a linear error-correcting code that encodes k-bit
messages as n-bit codewords. The encoding and decod-
ing operations are denoted as Enc and Dec respectively. In
Fig. 1 we take R uniformly drawn from {0, 1}k and

W = X ⊕ Enc(R) ; X̂ = W ⊕ Enc(Dec(W ⊕X ′)). (1)

This is depicted in Fig. 2.
If X is uniformly distributed on {0, 1}n then the scheme is
not only a SS but in fact also a FE; this holds because a
uniform X gives rise to helper data W that leaks nothing
about R. The formulas for the FE are: S = R and W =
X ⊕ Enc(R); R̂ = Dec(X ′ ⊕W ). Note that for uniform X
the W reveals the syndrome of X, but nothing about R.
Hence R can then be used as a cryptographic key.
In this paper we study the case where X is not uniformly
distributed. A non-uniform X appears naturally, e.g. in the

1



case of Coating PUFs [16], where Gray-coded capacitance
measurements are concatenated to form X. Typically not
all the Gray code words are represented, which leads to
non-uniformity.

Similarly, a biometric feature vector is often split up into
near-inependent components which each yield a small num-
ber of non-uniform bits.

1.3 Zero Leakage

For some sources X it is possible to define helper data that
reveals nothing about S. This is sometimes called Zero
Secrecy Leakage (ZSL) helper data. The information con-
tained in X is split into two independent parts, one of which
serves for error correction, and one for making the secret S.

As we saw above, the COM with uniform X has the ZSL
property. Another example is the quantile partitioning
scheme [18] of Verbitskiy et al. for continuous X, and its
generalization to non-uniform S [5].

1.4 Contributions and outline

In this paper we propose a simple modification of the Code
Offset Method SS. The basic idea is to add a number (say
m−1) of dummy helper data instances to the publicly stored
enrollment data, and to randomly permute the list. All the
instances are a priori indistinguishable from the point of
view of the adversary, but the legitimate party possesses X ′,
which allows for efficient selection of the correct helper data
instance. This workload asymmetry improves the security.
For small m, the attacker may simply try out all possibil-
ities, which leads to an average attack effort of (m + 1)/2
times the original one. For very large m this brute force
attack is no longer feasible, and the attacker is forced to ig-
nore the public data; in this way a new kind of ‘zero leakage’
is achieved, distinct from the ZSL of Section 1.3, namely
public data that reveals practically nothing about X (as
opposed to S).

The concept of ‘spamming’ the attacker in this way is very
general and is applicable whenever there exists an efficient
way of recognizing the correct W using X ′. In this paper
we show how the ‘spamming’ concept can be applied to
the Code Offset Method. Our scheme requires the use of
a linear error-correcting code with low-density parity check
matrix (LDPC) in order to keep the legitimate party’s work-
load low.

In Section 2 we introduce the notation and assumptions
that we work with. In Section 3 we analyze the leak-
age of the ordinary Code Offset Method and briefly re-
view the Leftover Hash Lemma. In Section 4 we present
our new scheme, which we call the Spammed Code Offset
Method (SCOM). Section 5 contains a security analysis of
our scheme and a brief discussion of memory requirements.
A discussion and conclusions are given in Section 6.

2 Notation and attacker model

Random variables are written with capitals, and their re-
alizations in lower case. Vectors are in boldface; sets in
calligraphic font. Concatenation is denoted as ||. The nota-
tion dHamm(x, y) stands for the Hamming distance between

x and y. The logarithm ‘log’ is defined in base 2. The
natural logarithm is ln.
The Code Offset Method works with a linear code C that
has n-bit code words and k-bit messages. The encoding and
decoding algorithms associated with this code are denoted
as Enc and Dec respectively. The algorithm for computing
the syndrome is denoted as Syn.
We consider a POK whose output at enrollment is a bit
string X ∈ {0, 1}n. The probability distribution of X is
called ρ, and ρ is not necessarily uniform. The string R in
Fig. 2 has length k. The helper data is called W . In the
FE setting, the cryptographic key that is ultimately derived
from the POK is denoted as K ∈ {0, 1}`.
We will use shorthand notation pxw = Pr[X = x,W = w],
pw = Pr[W = w] and px|w = Pr[X = x|W = w], when it
does not cause ambiguity. We define qz = Pr[Syn(X) = z].
The public data stored in nonvolatile memory is P .
The outcome of the POK measurement in the reconstruc-
tion phase is denoted as X ′ ∈ {0, 1}n. The X ′ is a noisy
version of X, and in general does not have the same proba-
bility distribution as X. The estimator for K, derived from
X ′ and the public data, is denoted as K̂.
We will rely on a cryptographic hash function f . Further-
more we will use a Universal Hash Function g(x, a), where
the second argument is public auxiliary randomness.
The attacker model is summarized as follows. We distin-
guish between two scenarios:

1. Biometric database for authentication.
The adversary can read but not manipulate the public
data P . His aim is to learn as much about X as he
can.1

2. Secure key storage with a POK.
The adversary has access to the device which contains
the POK. He cannot re-activate the device’s enrollment
mode of operation. The opacity of the POK, and the
embedding of the POK in the device, prevent the ad-
versary from reading out K from the POK. Further-
more, physical tampering with the POK is unerringly
detected by the device at the reconstruction phase.
The public data P is stored on the device in insecure
nonvolatile memory. The adversary is able to read and
to manipulate P . There is no Public Key Infrastruc-
ture that would allow the device to verify the authen-
ticity of the public data. The adversary’s main aim is
to learn the POK key K. A secondary goal is to cause
the device to accept a key other than K as the correct
key.

In both scenarios the adversary is able to discern whether
reconstruction is successful. No other side channels exist.

3 Analysis of the Code Offset Method

We consider the general case of a non-uniform distribution
ρ, and review what is known about the leakage of the COM.
We briefly discuss the required amount of compression in
case one wants to build a FE based on the COM.

1He may exploit this knowledge in various ways: (i) Some part of
X may reveal information about medical conditions. This is a privacy
risk. (ii) Construct a fake biometric in order to pass authentication.
This is a security risk. (iii) Cross-linking of people across different
databases. This is a privacy risk.

2



Lemma 1 The Code Offset Method has the following prob-
abilities,

prw = 2−kρ(w ⊕ Enc(r)) (2)

pw =
1

2k

X
r∈{0,1}k

ρ(w⊕Enc(r)) =
1

2k
Pr[SynX=Synw] (3)

pr|w =
ρ(w ⊕ Enc(r))P

t∈{0,1}k ρ(w ⊕ Enc(t))
(4)

pxw = 2−kρ(x)δSyn(w),Syn(x) (5)

px|w =
ρ(x)δSyn(w),Syn(x)P

t∈{0,1}k ρ(w ⊕ Enc(t))
. (6)

Proof: The R is drawn uniformly and thus each r has prob-

ability 2−k of occurring. The probability Pr[W = w|R = r]
is given by ρ(w ⊕ Enc(r)). Multiplication of these two
gives (2). Equation (3) follows by computing pw as the
marginal of prw by summing over r. Eq. (4) follows from
pr|w = prw/pw. Finally, (5) and (6) follow from (2) and (4)
by setting x = w ⊕ Enc(r), which is only possible if x and
w have the same syndrome. �
Eq. (4) shows that in general pr|w 6= pr. Thus, W leaks
information not only about Syn(X), but also about R.

Lemma 2 In the Code Offset Method it holds that

H(W ) = k + H(SynX) (7)

H(X,W ) = H(X) + k (8)

I(X;W ) = H(SynX). (9)

Proof: H(W ) follows directly from (3), and H(X,W ) from
(5). The I(X;W ) is computed as H(X)+H(W )−H(X,W ).
�
In order to obtain a nearly uniform key K from X (or,
equivalently, from R), one has to hash down to a smaller size
(say `): K = g(X,A) ∈ {0, 1}`. Here A is public auxiliary
randomness that serves as a ‘catalyst’ for the UHF g.
Let U be a uniform variable on {0, 1}`. The relation be-
tween ` and the uniformity of K is given by the Leftover
Hash Lemma (LHL) [9] and can be formulated as

` ≤ Lε(X,W ) =⇒ Ew[∆(U ;K|W = w)] ≤ ε (10)

with Lε(X,W ) = H2(X|W ) + 1− 2 log
1

ε
. (11)

Eq. (10) states that the non-uniformity of K given W does
not exceed ε as long as X has been sufficiently hashed down.
The ` must not exceed the ‘ε-extractable randomness’ Lε.
The notation H2 in (11) stands for the conditional Rényi
entropy of order two and is defined as [7]

H2(X|W ) = −2 logQ2(X|W )

Q2(X|W ) = Ew
qP

xp
2
x|w =

X
w

qP
xp

2
xw, (12)

where Ew stands for the expectation value over W .
Note that the ‘penalty’ term 2 log 1

ε
in (11) depends only

on ε, i.e. it depends not on the improvement of the unifor-
mity but on the final uniformity. Because of this fact, the
approach using UHFs can be quite wasteful.
Remark: Under some conditions [1] the factor 2 in the
penalty term can be replaced by 1. Furthermore, the LHL
can be sharpened a bit by considering smooth Rényi en-
tropy [12, 13, 19]. Such details are beyond the scope of the
current paper.

4 Our construction: the Spammed Code
Offset Method

We first show a naive spamming approach, without efficient
de-spamming at the reconstruction phase. Then we propose
an efficient scheme, in two variants: one in the privacy-
preserving biometrics context, the other in the secure key
storage context.
The efficient scheme requires a linear block code with a low-
density parity check matrix. The security and the storage
requirements are analyzed in Section 5.

4.1 Naive approach

Algorithm E0: Enrollment, the naive way

1. Measure X ∈ {0, 1}n.

2. Draw R ∈ {0, 1}k uniformly at random.

3. Compute helper data W = X ⊕ Enc(R).

4. For j ∈ {1, . . . ,m− 1} do:

(a) Uniformly draw Σj ∈ {0, 1}k.

(b) Draw Dj ∈ {0, 1}n from the distribution ρ.

(c) Compute Ωj = Dj ⊕ Enc(Σj).

5. Draw a random permutation π.

6. Construct a vector Ω = π(Ω1, · · · ,Ωm−1,W ).

7. Compute G = f(Ω||X).

8. Store public data P = (Ω, G).

Algorithm R0: Reconstruction, the naive way

1. Read P ′ = (Ω′, G′).

2. Measure X ′.

3. Set L1 = ∅. For j ∈ {1, . . . ,m} do:

(a) Try to compute Rj = Dec(X ′ ⊕ Ω′j).

(b) If the decoding succeeds then add j to L1.

4. If L1 = ∅ then abort.

5. Set L2 = ∅. For i ∈ L1 do:

(a) X̂i = Ω′i ⊕ Enc(Ri)

(b) Compute Gi = f(Ω′||X̂i).
(c) If Gi = G′ then add i to the list L2.

6. If |L2| 6= 1 then abort; else X̂ = XL2 .

Enrollment steps 2 and 3 represent the construction of the
ordinary COM helper data W . The Dj in step 4b are decoy
measurements. They follow the same distribution as X and
are therefore statistically indistinguishable from a real POK
measurement. The Ωj is the COM helper data associated
with the decoy Dj . The purpose of the random permutation
in step 6 is to hide from the adversary which entry of Ω is
the actual helper data. Here it is crucial that the adversary
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cannot ‘see inside’ the hash G. Since the entries of Ω are
distributed exactly in the way real helper data should be,
his knowledge about the statistics ofW does not help him to
decide which entry is the real one. This intuitive statement
is made more precise in Section 5.

Note that in step 7 the hash is computed over the whole
vector Ω. This ensures that any manipulation of the pub-
lic data will be detected, be it in the hash, in W or in
the decoys. This way of protecting the helper data against
manipulation was introduced by [2]. Alternatively, one may
use a Message Authentication Code with Key Manipulation
Security [4].

At reconstruction the public data may have been altered,
which is why we use the notation P ′, Ω′, G′ in step 1 of
algorithm R0. A list L1 is made of Ω′ entries that lead to
successful decoding. The whole set L1 has to taken into ac-
count, since some of the decoys may by chance decode, and
the order of the entries is random. The list of candidates
is further narrowed down to a list L2 of entries whose Xj
generates the correct hash. If P ′ = P and X ′ ≈ X then
typically there is only one candidate left in L2. If P ′ 6= P
or X ′ is too far away from X to be error-corrected, then
typically L2 = ∅. (Algorithm R0 continues the search after
having found its first match. Alternatively, we could stop.)

The main idea behind the scheme is that the adversary
cannot distinguish between the true helper data and the
decoys, while the device’s knowledge of X ′ helps it to see
the difference.

It may happen that the choice of system parameters is such
that R0 has a long running time. For instance, the process-
ing time in step 3 is linear in m, where m may be a large
number. Furthermore, the choice of n, k, and m may give
rise to a long list L1, and the number of hashes that has to
be computed in step 5 is linear in |L1|. In the schemes be-
low we aim to reduce the running time of the reconstruction
algorithm.

4.2 Scheme #1: Secure Sketch for biometrics
database

Below we show a more efficient pair of algorithms, in the
biometrics scenario. The main difference with the naive ap-
proach is the use of the syndromes Φ. Note that Syn(X) =
Syn(W ). Hence revealing F conveys no extra information
to the adversary; he could already compute F from W un-
aided.

The idea behind scheme #1 is that comparing Syn(X ′) to
Syn(X) and the other syndromes allows the device to heuris-
tically re-order Ω′ in such a way that the most likely can-
didates are tried out first. Here it is crucial that the parity
check matrix of the code has low density: then a small Ham-
ming distance between X and X ′ leads to a small Hamming
distance between Syn(X) and Syn(X ′).

The running time of the reconstruction algorithm R1 is
practically independent of the number of dummies, except
for steps 4–6 which are lightweight. Most importantly, due
to the sorting R1 does not have to compute many decodings
and hashes.

Algorithm E1:
enrollment for biometrics database

1. Measure the biometric X ∈ {0, 1}n.

2. Draw R ∈ {0, 1}k uniformly at random.

3. Compute the syndrome F = Syn(X).
Compute helper data W = X ⊕ Enc(R).

4. For j ∈ {1, . . . ,m− 1} do:

(a) Uniformly draw Σj ∈ {0, 1}k.

(b) Draw Dj ∈ {0, 1}n from the distribution ρ.

(c) Compute Φj = Syn(Dj).
Compute Ωj = Dj ⊕ Enc(Σj).

5. Choose a random permutation π.

6. Construct a vector Φ = π(Φ1, · · · ,Φm−1, F ).
Construct a vector Ω = π(Ω1, · · · ,Ωm−1,W ).

7. Compute G = f(Φ||Ω||X).

8. Store public data P = (Φ,Ω, G).

Algorithm R1: efficient biometric verification

1. Read P ′ = (Φ′,Ω′, G′).

2. Measure the fresh biometric X ′.

3. Compute F ′ = Syn(X ′).

4. For j ∈ {1, . . . ,m} do: dj = dHamm(F ′,Φ′j).

5. Make a permutation λ that sorts (dj)
m
j=1 in ascend-

ing order.

6. Let Ω̃ = λ(Ω′).

7. Let j = 0.

8. Increase j. If j = m+ 1 then abort.

9. Try to compute Rj = Dec(X ′ ⊕ Ω̃j).
If the decoding fails then goto 8.

10. X̂j = Ω̃j ⊕ Enc(Rj).

11. If G′ 6= f(Φ′||Ω′||X̂j) then goto 8.

12. Accept.

Remark 1: In step 7 of E1, the Φ and Ω also serve as salt
for the hashing of X.

Remark 2: There are many alternative ways to organize the
steps in (R1,E1). For instance, in step 6 of R1 the vector
Ω′ does not have to be physically permuted; permutation
of the indices {1, · · · ,m} is more efficient.

4.3 Scheme #2: Fuzzy Extractor

Below we present the Fuzzy Extractor version of algorithms
(E1, R1), in the POK scenario.
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Algorithm E2: enrollment for POK

1. Measure the POK output X ∈ {0, 1}n.

2. Generate random A. Compute K = g(X,A).

3. Draw S ∈ {0, 1}k uniformly at random.

4. Compute the syndrome F = Syn(X).
Compute helper data W = X ⊕ Enc(S).

5. For j ∈ {1, . . . ,m− 1} do:

(a) Uniformly draw Σj ∈ {0, 1}k.

(b) Draw Dj ∈ {0, 1}n from the distribution ρ.

(c) Compute Φj = Syn(Dj).
Compute Ωj = Dj ⊕ Enc(Σj).

6. Choose a random permutation π.

7. Construct a vector Φ = π(Φ1, · · · ,Φm−1, F ).
Construct a vector Ω = π(Ω1, · · · ,Ωm−1,W ).

8. Compute G = f(Φ||Ω||A||X).

9. Store public data P = (Φ,Ω, A,G).

Algorithm R2: efficient reconstruction of POK

1. Read P ′ = (Φ′,Ω′, A′, G′).

2. Measure the POK output X ′.

3. Compute F ′ = Syn(X ′).

4. For j ∈ {1, . . . ,m} do: dj = dHamm(F ′,Φ′j).

5. Make a permutation λ that sorts (dj)
m
j=1 in ascend-

ing order.

6. Let Ω̃ = λ(Ω′).

7. Let j = 0.

8. Increase j. If j = m+ 1 then abort.

9. Try to compute Rj = Dec(X ′ ⊕ Ω̃j).
If the decoding fails then goto 8.

10. X̂j = Ω̃j ⊕ Enc(Rj).

11. If G′ 6= f(Φ′||Ω′||A′||X̂j) then goto 8.

12. K̂ = g(X̂j , A
′).

The only difference with the biometrics scenario (E1,R1) is
the use of the auxiliary randomness A and the computation
of K and K̂.

5 Analysis of the SCOM

We investigate how much information about X is revealed
to the adversary by showing him Ω. In principle we should
be looking at the leakage from the whole public data P , but
there one hits a snag: information-theoretically there is no
such a thing as a one-way function. The hash G hides its

input in practice, but information theory gives I(X;P ) =
I(X;W ). The leakage from Ω is a better way to represent
the adversary’s actual workload.
In the biometrics scenario, the relevant quantity to look at
is Shannon entropy. (One might argue that min-entropy
is more important, but since we do not have the stringent
requirements that cryptographic keys have to satisfy2 , we
will stick to Shannon entropy.) The relevant quantity in
the POK scenario is the Rényi entropy H2, which features
in the ε-extractable randomness (11). We show results for
both scenarios.
In Section 5.3 we also briefly look at memory requirements.

5.1 Leakage in terms of Shannon entropy

We first present two lemmas that allow us to relate the leak-
age I(X; Ω) to the adversary’s ignorance about the permu-
tation Π. Then we present a result for small m and for
large m.

Lemma 3 The adversary’s ignorance about X given Ω can
be written as

H(X|Ω) = H(X|W ) + I(Π;XΩ). (13)

Proof: We write H(X|ΩΠ) in two ways: as H(X|W ) and
as H(XΠ|Ω) − H(Π|Ω) = H(XΠ|Ω) − H(Π) = H(X|Ω) +
H(Π|XΩ) − H(Π). Equating the two different expressions
yields (13). �

Lemma 4 Let t(x,ω) denote the number of entries in ω
that are consistent with x, i.e. t(x,ω) = |{j : Syn(ωj) =
Syn(x)}|. Then

H(X|Ω) = H(X|W ) + logm− Exω log t(x,ω). (14)

Proof: We write I(Π;XΩ) = H(Π)− H(Π|XΩ) = logm!−
H(Π|XΩ). For a given t(x,ω) there are t possible ways to
place w in ω; furthermore there are m−1 further entries to
be permuted, which can be done in (m−1)! ways. The total
number of permutations π consistent with x and ω is t·(m−
1)!. They are all equiprobable from the point of view of the
adversary. Hence H(Π|X = x,Ω = ω) = log[t · (m− 1)!]. It
follows that H(Π|XΩ) = Exω log[t·(m−1)!] = log(m−1)!+
Exω log t and I(Π;XΩ) = log m!

(m−1)!
−Exω log t. Finally we

substitute this expression for I(Π;XΩ) into Lemma 3. �

Theorem 1 The conditional entropy H(X|Ω) can be
bounded from below as

H(X|Ω) ≥ H(X|W ) + logm− m− 1

ln 2
ExqSyn(x). (15)

Proof: We write t(x,ω) = 1+u(x,ω) and use ln(1+u) ≤ u.

This gives Exω log t(x,ω) ≤ 1
ln 2

Exωu(x,ω). For given x,
the u is binomial-distributed with parameters m − 1 and
qSyn(x). (See Section 2 for the notation q.) Thus we have
Exωu(x,ω) = Ex(m− 1)qSyn(x). �
At first sight (15) might seem to contradict the well known
principle ‘conditioning reduces Shannon entropy’. However,
it should be borne in mind that Ω is not just W plus decoys;
Ω results from a function Π applied to W and the decoys.
The function Π reduces the leaking effect of W .

2Remember that most biometrics cannot be kept secret, since it
is possible to measure them surreptitiously.
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The probability qSyn(x) is typically of the order 1/2n−k if X
is not too strangely distributed. Hence the last term in (15)
is a small correction term if m < 2n−k. Eq. (15) confirms
the intuitive idea that the attacker’s effort increases by a
factor ≈ m/2. Note that the bound in Theorem 1 is far from
tight when m is large. For large m we have the following
result.

Theorem 2 The conditional entropy H(X|Ω) can be
bounded from below as

H(X|Ω) ≥ H(X)− 1

m
· 2n−k − 1

ln 2
. (16)

Proof: As in the proof of Theorem 1, we write t = 1 + u.
Furthermore we split u into its expectation value (at fixed
x) and a deviation: u = (m− 1)qSyn(x) + δ, where Eδδ = 0.
This gives

Exω log t = Ex log[mqSyn(x)] + Ex log[1 +
1− qSyn(x)
mqSyn(x)

]

+Exδ log(1 +
δ

1 + [m− 1]qSyn(x)
). (17)

Next we use ln(1 + z) ≤ z twice, and Eδδ = 0, to get

Exω log t ≤ logm+ Ex log qSyn(x) +
1

ln 2
Ex

1− qSyn(x)
mqSyn(x)

= logm+
X

z∈{0,1}n−k

qz log qz +
1

m ln 2
(−1+

X
z

qz
qz

)

= logm− H(SynX) +
2n−k − 1

m ln 2
. (18)

Substitution of (18) into Lemma 4 finishes the proof. �
If m is of order 2n−k or larger, then the 1

m
term in Theo-

rem 2 is a small correction term; we see that Ω then hardly
leaks anything about X, as we expected intuitively.

5.2 Leakage in terms of Rényi entropy

We present a bound on H2(X|Ω) that is useful for large m.
We observe that for the adversary each entry in ω is equally
likely to be the correct one. Thus, his knowledge about x
can be parametrized as a probability distribution that is
conditioned on each of the entries ωj with equal probability
1/m. This gives

px|ω =
1

m

mX
j=1

px|ωj
. (19)

Based on (19) we obtain the following result.

Theorem 3 The conditional Rényi entropy H2(X|Ω) can
be bounded from below as

H2(X|Ω) ≥ H2(X)− 1

m ln 2

"
Ew
P
x p

2
x|wP

x p
2
x

− 1

#
. (20)

Proof:

H2(X|Ω) = −2 logEω

qP
xp

2
x|ω (21)

≥ −2 log
q

Eω

P
xp

2
x|ω (22)

= − logEω

X
x

1

m2

X̀
a,b=1

px|ωapx|ωb
(23)

= − log
1

m2

X
x

24X
a

Eωp
2
x|ωa

+
X

a,b:a6=b
Eωpx|ωapx|ωb

35 (24)

= − log
X
x

»
1

m
Ewp2x|w + [1− 1

m
]p2x

–
(25)

= − log

"
(
X
x

p2x)(1 +
Ew
P
x p

2
x|w−

P
x p

2
x

m
P
x p

2
x

)

#
(26)

= H2(X)− log(1 +
Ew
P
x p

2
x|w −

P
x p

2
x

m
P
x p

2
x

). (27)

In (22) we used Jensen’s inequality. In (23) we substituted
(19). Finally (20) is obtained from (27) by using log(1+z) =
ln(1 + z)/ ln 2 ≤ z/ ln 2. �
Remark: If X is not too far from uniform, then the 1

m
-term

in Theorem 3 is of order 2n−k/m, i.e. the same order of
magnitude as the 1

m
-term in Theorem 2.

When spammed helper data Ω is used instead of W , the
entropy H2(X|W ) in the extractable randomness formula
(11) can be replaced by the (much) larger number H2(X|Ω).

5.3 Storage requirements

In the biometrics scenario there is a large amount of storage
space per enrolled person, since the public data P is usually
stored in a dedicated database. Blowing up the database
by a factor m could be feasible. Furthermore, the original
W is a very small thing to start with.

In the POK scenario, however, the public data is usually
stored on the device that contains the POK. This device
has to be cheap; hence nonvolatile memory may become an
issue.

Below we tabulate some numerical estimates. The k = 128
case corresponds to a POK with a 128-bit key. The k = 64
case represents the biometrics scenario. (We could even
have chosen k a little smaller.) The ‘err’ is the number
of errors that the LDPC code can correct. Under ‘Mem’
we list the space required to store Ω and Φ, namely m ·
(2n − k) bits. The values of n are approximate and are
meant only to give orders of magnitude. For m we list two
values: m = 2(n−k)/2, which reduces the leakage from W by
approximately half the bits, and m = 2n−k which almost
completely cancels the leakage.

k = 64 k = 128

err n logm Mem n logm Mem

1 72 4 0.2KB 138 5 0.6KB

8 2.5KB 10 19KB

2 78 7 1.4KB 146 9 10KB

14 0.2MB 18 5.1MB

3 85 10.5 19KB 154 13 0.2MB

21 27MB 26 1.4GB

Table 1: Memory required to store Ω and Φ, listed as
a function of k, the number of errors to be corrected and
logm.
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6 Discussion

We have proposed the Spammed Code Offset Method, in
which the adversary gets spammed with bogus helper data.
For small spam factor m, the security is increased by
roughly logm bits. For large m, of the order 2n−k or larger,
the leakage I(X;W ) is practically eliminated. These state-
ments are quantified in Theorems 1, 2 and 3. While the
workload of the adversary is increased, the workload of the
legitimate party (counting only calls to Dec and the hash
function f) stays almost constant as a function of m. This
is achieved by using Hamming distance in syndrome space
as a fast candidate selection criterion, where the use of an
LDPC code makes sure that a small distance between X
and X ′ translates to a small distance in syndrome space.
In the POK scenario it depends on various system parame-
ters whether it makes sense to use the SCOM. If the avail-
able nonvolatile memory in the device is limited and there
is ample entropy in X, then the ordinary COM suffices.
Table 1 illustrates that for a 128-bit key and logm compa-
rable to n− k, the size of the public data rapidly becomes
infeasibly large as the number of errors increases. However,
it should be borne in mind that a even a small m already
yields a (modest) security improvement. The SCOM pro-
vides a new kind of trade-off: a more effective use of source
entropy is achieved at the price of digital memory usage.
In the biometrics case it is especially important to elimi-
nate the leakage I(X;W ), since the entropy of X is usually
rather low and has to be maximally exploited. Fortunately
it is easier to meet the memory requirements in this sce-
nario.
As future work we will do experiments with various LDPC
codes in order to optimize the search in algorithms R1 and
R2, and in order to get more precise numbers in Table 1.
Another interesting issue to look at is the cross-linkability
between biometric templates in different databases. When
lots of decoy entries are added to the templates, it becomes
much harder for an adversary to decide if templates in dif-
ferent databases belong to the same person, since the decoys
are likely to cause false matches.
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[11] J.-P. Kaps, K. Yüksel, and B. Sunar. Energy scal-
able universal hashing. IEEE Trans. Computers,
54(12):1484–1495, 2005.

[12] R. Renner and S. Wolf. Smooth Rényi entropy and
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